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Abstract

For two consecutive frames in a video, we identify which
pixels in the first frame become occluded in the second.
Such general-purpose detection of occlusion regions is dif-
ficult and important because one-to-one correspondence of
imaged scene points is needed for many tracking, video seg-
mentation, and reconstruction algorithms. Our hypothesis
is that an effective trained occlusion detector can be gener-
ated on the basis of i) a broad spectrum of visual features,
and ii) representative but synthetic training sequences. By
using a Random Forest based framework for feature selec-
tion and training, we found that the proposed feature set
was sufficient to frequently assign a high probability of oc-
clusion to just the pixels that were indeed becoming oc-
cluded. Our extensive experiments on many sequences sup-
port this finding, and while accuracy is certainly still scene-
dependent, the proposed classifier could be a useful pre-
processing step to exploit temporal information in video.

1. Introduction
Different parts of a scene become occluded and dis-

occluded over the course of a video, confounding attempts
to compute the motion field. Motions that are fast with re-
spect to a camera’s frame rate can cause large regions of
pixels to temporarily disappear from view, while slower mo-
tions hide only the pixels on an object’s leading occlusion
boundary. We focus on the former because 3D occlusions
are so prevalent in video. Though occlusion regions are oc-
casionally ignored, some applications attempt to cope with
them by treating them as outliers. For example, when es-
timating optical flow in a neighborhood, it is typical for an
energy function to balance the model’s desire for uniform
flow against the evidence that the neighborhood’s flow is
discontinuous. The challenge is increased when ambigu-
ous motion calls for substantial smoothing, yet occlusion
can trivially excuse any mismatch between the data and the
model.

Some algorithms posit that occlusions are correlated
with intensity discontinuities. Though impractical for
scenes with substantial texture, they either regularize less

when the intensity changes, or not at all when dealing, for
example, with a superpixel boundary [32]. Our experiments
confirm that image gradients are a useful cue, but that many
other cues, suggested individually and in groups by previ-
ous researchers, are also very revealing and correlated with
occluded pixels. Our main contribution is that supervised
learning with a broad feature vector, formed from a spec-
trum of cues, allows our algorithm to compute a probabilis-
tic per-pixel occlusion map for each pair of images in a se-
quence.

2. Related Work

The detection of occlusion regions for their own sake has
received somewhat less attention than occlusion in the con-
text of general motion or depth segmentation, layer extrac-
tion, and identification of occlusion boundaries. Here we
review only the most directly related research, where occlu-
sion was computed either explicitly, or implicitly as part of
other objectives.

Occlusion Boundaries Occlusion boundaries are distinct
from occlusion regions, and are also very useful because
they can hint at ordered depth, motion direction, and scene
context. Given multiple frames, one approach, proposed by
Fleet et al. [12], created a generative non-linear model for
motion boundaries. Their Bayesian formulation explained
local image motion in terms of multiple competing nonlin-
ear models of, among others, translational motion and mo-
tion discontinuities. They identified occlusion using the dif-
ferences between background and foreground velocity, nor-
mal to the edge.

T-junctions are known to be important indicators for oc-
clusion boundaries. Apostoloff and Fitzgibbon [2] learned
the appearance of T-junctions using SIFT features [26]
on spatiotemporal patches with a Relevance Vector Ma-
chine. They find occlusion boundaries by identifying edges
close to T-junctions on a spatiotemporal slice. Stein and
Hebert [37] showed that these boundaries can be learned
directly using AdaBoost with appearance and motion cues
from multiple frames, typically 8-20 frames. These motion
features depend on the translational motion of intensity-
based superpixels, and the speed of those boundary frag-
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ments as measured by spatiotemporal filters. Using loopy
belief propagation, their global boundary model converges
to a consensus on the probable labeling of all boundaries.
To interpret a scene, He and Yuille [14] demonstrated that
a global boundary model is not essential, especially when
dealing primarily with egomotion. They achieved compa-
rable results to [37] by combining pseudo-depth and a lo-
cal edge map, also from intensity superpixels, in a multi-
layered perceptron. Sundberg et al. [40] improve over these
techniques by comparing motion differences each side of
static boundaries predicted using motion gradients. A re-
quirement of these methods is the use of more than two
frames to identify occlusion boundaries in an image pair.
Although our feature vector borrows from these techniques,
it: (1) is computed from only two frames in a video; (2)
makes no assumptions about the type of motion being ob-
served; (3) completely avoids committing to intensity-based
superpixel boundaries; and (4) combines multiple motion
and intensity-based cues.

Methods have also been proposed to find occlusion
boundaries in single frames. With no motion information,
occlusion boundary detection in a single image remains an
inherently ambiguous problem. Hoiem et al. [16] used
an initial over-segmentation to enumerate possible object
boundaries when performing automatic single-view recon-
struction. Saxena et al. [34] also used a supervised learn-
ing approach to classify boundaries between superpixels but
relaxed some of the strong planar assumptions of the for-
mer technique to cope with more general scenes. Using a
global boundary model similar to [37], Hoiem et al. [17]
used boundary, region, and surface layout cues for classi-
fication. Assuming a camera height and focal length, they
use geometric class labels to get depth cues.

Layers While we make no assumptions about the num-
ber of independent motions in a scene, doing so helps or-
ganize a video into layers. Layers of video with occlu-
sions was pioneered by Wang and Adelson [42]. One ap-
proach is to model each input image as a layered com-
position of a fixed number of flexible sprites [21]. Varia-
tional EM was used to infer the sprite’s state, including the
obstructed pixels. To make this technique more robust to
occlusion, Frey et al. [13] extended it by considering the
variability of the layer’s motion in each sprite as a mani-
fold. Kumar et al. [24] also explored an unsupervised ap-
proach with a generative layered representation for motion
segmentation. Their latent image representation, which is
learned over independent frames, also explicitly models oc-
clusions. Our probability of occlusion is independent per-
pixel, as we have no expectation of contiguous regions or a
pre-determined family of allowable motions.

Xiao and Shah [46] compute affine and projective trans-
formations of planar regions while detecting occlusion pix-
els, before segmenting the scene into motion layers. They

pose multi-frame motion segmentation as an energy mini-
mization problem which has penalties for occlusion and oc-
clusion order constraints on each consecutive frame pair.

Ayvaci and Soatto [4] segment motion using a super-
pixel graph, where a min-cut reveals intensity-based seg-
ments which can be clustered together. Part of the unary
term in their graph penalized the photoconsistency residual,
which helps identify partially or fully occluded superpixels.
Their method alternates between motion segmentation and
occlusion detection until the energy converges.

Stereo While we cope with both egomotion and moving ob-
jects, the stereo research community has attempted to ex-
plicitly find occlusion regions for rigid scenes [22]. Yang et
al. [47] alternate between estimating disparity in one view
based on the occlusion in the other, and estimating occlu-
sion based on disparity. During optimization, if the dispar-
ity of a pixel in the right and left images is not consistent,
the pixel is labeled as occluded. Sun et al. [39] uses occlu-
sion information to update their data term toward the end
of their optimization. Due to the difficulty of estimating
disparity in textureless regions, both papers assume regions
with similar color have similar disparity, which is consistent
with [6]. In this way, the assumption is made that occlusion
regions coincide with the boundaries of these color regions.
To regularize in regions of low texture, a plane fitting step
is performed, which can result in inaccuracies when dealing
with non-rigid and non-planar scenes.

Occlusion-Aware Optical Flow Occluded pixels have un-
defined flow, so good estimates of flow depend on occlu-
sion and vice versa. Heitz and Bouthemy [15] addressed
the dense motion estimation problem in a multimodal for-
mulation. Using complementary constraints, their method
estimates optical flow while preserving motion discontinu-
ities and presumed occlusions. The relationship between
observation fields and motion labels is determined using an
MRF, where local motion constraints are ignored in regions
where occlusions are likely to occur.

Most current flow techniques use a regularization step to
propagate flow into regions of low texture. On their own,
such techniques arbitrarily diffuse flow to regions of oc-
clusion, even though flow is essentially not applicable to
such regions. Motion estimation techniques explicitly deal-
ing with this situation insert an occlusion penalty term into
the energy. Alvarez et al. [1] proposed one such solution,
computing symmetrically dense optical flow which is con-
sistent from I1 to I2 and I2 to I1. This is achieved by min-
imizing an energy function which respects occlusion. They
initialize their minimization with standard one-way flow in
each direction. Areas with inconsistent flow are labeled
as occluded. They achieved positive results on synthetic
sequences, but do not attempt to deal with large displace-
ments.

The energy functional proposed by Ince and Konrad [19]
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includes three terms: photometric consistency weighted by
inverse disparity in reverse and forward flow, a shrinking
term to avoid degenerate solutions where everything is oc-
cluded, and an anisotropic diffusion term to extrapolate flow
into occlusion regions. The diffusion process is still driven
by image gradients, so their method is severely hindered by
highly textured areas. In comparison, Xiao et al. [45] ad-
dresses the shortcomings of the diffusion filter by dividing
the variational updating model into two steps: the first pro-
duces intermediate flow by minimizing the data energy, and
the second diffuses this intermediate flow. For occlusions,
they add a heavyside function of the image residue to the
energy functional in the first term. They use a multi-cue
bilateral filter instead of the traditional anisotropic filter to
avoid diffusing flow across occlusion boundaries.

Ayvaci et al. [3] treat residuals for occlusion and non-
occlusion areas separately. Their energy function mini-
mizes the area of occlusion while minimizing the negative
log-likelihood of the non-occlusion residual. This becomes
a convex problem by using an adaptively weighted `1 norm
of their energy function, based largely on flow photocon-
sistency. However, these flow-based techniques still require
parameter tuning as optimal values can be very scene spe-
cific. The success of these techniques motivates us to utilize
optical flow computation as one of the significant compo-
nents of our larger feature vector.

Occlusion Regions Kolmogorov and Zabih [23] incor-
porate Marr-Poggio’s [28] uniqueness principle into their
graph-cut algorithm, stipulating that each pixel in one frame
shall correspond to at most one pixel in the other frame.
A pixel with no match is then considered as occluded.
Jodoin et al. [20] built on this principle to make it more
robust to noise. Using a method similar to Ince and Kon-
rad [18], they generated a coarse occlusion map where a
pixel is marked occluded if fewer than two pixels’ intensi-
ties in its neighborhood are within a certain Euclidean dis-
tance. They iteratively improve their occlusion map by ad-
justing a color segmentation map. Lobaton et al. [25] also
employed color information in finding occlusions. They in-
troduced an image homeomorphism criterion for detecting
local occlusions when objects and backgrounds can clearly
be segmented into connected components based on distinct
color distributions. The technique was demonstrated on real
sequences and unusually, is designed to even cope with de-
formations. We too make no assumptions about the types of
deformation in our videos, but are not restricted to scenes
where foreground segmentation is obvious.

3. The Occlusion Classification Algorithm

We formulate occlusion region detection as a supervised
binary classification problem. Our classifier for each data

point, represented as a feature vector f , is defined as

O :=
{

(fi → Li) | fi ∈ Rd, Li ∈ [0, 1]
}t
i=1

, (1)

where label L = 1 indicates a region of occlusion, d is the
length of the feature vector, and t is the number of training
samples available. We use Random Forests [8] for classi-
fication because they inherently perform feature selection,
and our feature vectors are quite long by design. Given high
quality labeled occlusion training data, the core of this algo-
rithm hinges on filling f with cues that may correlate well
with occlusion regions. We now present the sets of features
that f comprises, and explanations of how these features
were chosen. This feature set is not definitive, but has been
chosen to cover a broad spectrum of cues.

Overall, flow plays a key role in indicating occlusion
regions, so it is used throughout our feature vector. Even
though we identify motion cues as necessary, no single al-
gorithm is best at indicating occlusions. Like Mac Aodha et
al. [27], we use a set a ∈ [1, k] of flow algorithms to
find per-pixel flow confidence based on supervised classi-
fication. This helps capitalize on situations where the flow
algorithms are in consensus, or identify regions where the
motion fields seem arbitrary. We employ a different set of
k = 4 algorithms. [43, 44, 38, 10] are chosen for their high
ranking on a spectrum of test data, with implementations
provided by their respective authors.
Occlusion Boundaries Many occlusion boundaries lie
close to object edges. A distance transform on an edge de-
tector’s output indicates to the forest the proximity of such
a boundary. We use the Canny edge detector [11] on I1,
the first frame of the two frame sequence being considered,
with the hysteresis thresholds τED provided by MATLAB, so

fED (x, z) = distTrans (‖∇I1 (z) ‖ > τED) , (2)

where fED (x, z) gives the feature value at pixel x at scale-
space level z. Further, some methods [17, 37, 14] instead
use the Pb edge map [29] as an initial guess for finding
occlusion boundaries. Computing the edge distance after
thresholding this map with τPB gives the feature

fPB (x, z) = distTrans (Pb [I1 (z)] > τPB) , (3)

which strongly correlates with other object boundaries.
High values are assigned to both the occluding and occluded
surface, which is a typical quality of weak learners.
Photo and Texture Consistency Most flow algorithms
work on the brightness constancy assumption, so cross-
checking constancy in a feature can help reveal occlusions.
By advecting the pixels in I1 by ua, the result from flow
algorithm a, we compute the consistency in value with
the corresponding pixel in I2. This is similar to the im-
age residual, i.e. photo consistency term used in the en-
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ergy functional of some flow and occlusion detection meth-
ods [3, 45, 19]:

fPC,a (x, z) = |I1 (x, z)− bicubic (I2 (x + ua(x, z), z))| .
(4)

Note that a high value is assigned to pixels where x +
ua(x, z) is out of bounds of the frame. This allows the
forest to notice occlusions due to changes in field of view
(FOV).

Similarly, inconsistency in texture can also reveal occlu-
sions. Brox [9] proposed a condensed texture filter suited
for discrimination tasks. These textures are computed over
both I1 and I2. From texture patches around each pixel, [9]
proposes to compute texture difference as

fnST,a (x) = 1
D

∑D
d=1

(
µn(T1,d(x))−bicubic(µn(γ

a
d (x)))

σn(T1,d(x))−bicubic(σn(γa
d (x)))

)2

,

(5)
where T1,d (x) and T2,d (x) denote the dth texture filter re-
sponse at pixel x for I1 and I2 respectively, and γad (x) ≡
T2,d (x + ua(x)) gives texture values in I2 for each corre-
sponding pixel x in I1 using flow. The texture feature depth
is D = 5. µn(·) and σn(·) denote the mean and standard
deviation of the texture in an n × n neighborhood. Using
the advected texture, we also compute the Mahalanobis dis-
tance per pixel between the two texture features,

fSTm,a (x) =

√√√√ D∑
d=1

[T1,d (x)− bicubic (γad (x))]
2
/σ2

d,

(6)
where σ2

d is the variance of filter response d over both T1,d

and T2,d.
Flow Features We assume that many depth discontinuities
that are likely to create occlusions are also flow discontinu-
ities. The gradient of the median flow of all the flow algo-
rithms is one simple measure of such discontinuities:

fTG,x (x, z) = ‖∇ūx‖ , fTG,y (x, z) = ‖∇ūy‖. (7)

Since temporal gradient is computed only over two pixels,
it is unable to detect proximal flow changes. To address
this concern, we examine the spatial variance of flow angles
θa(x, z) = arctan [ux,a(x, z)/uy,a(x, z)], within a given
window size. Here, the change in direction of flow within
a conservative window hints at different surfaces around a
pixel. For each flow algorithm, we compute an angle vari-
ance over scale-space,

fnAV,a (x, z) = E
[
(θa(xi, z)−E [θa(x, z)])

2
]
, (8)

where xi ∈ NAV samples an n × n square neighborhood
around x. Similarly, with the flow norm Ma(x, z) =
‖ua(x, z)‖, we compute the spatial variance of flow length
around a pixel

fnLV,a (x, z) = E
[
(Ma(xi, z)−E [Ma(x, z)])

2
]
, (9)

where xi ∈ NLV is the window centered at x. Note that
both the angle and length variance features will also fire at
disocclusions. We also compute the time it would take for
pixels on diagonally opposite sides of a neighborhood to
arrive on the center pixel. This is computed by projecting
the flow of each pair of pixels onto the line connecting them.
With an n × n window, time to collision is computed for
all (n2 − 1)/2 pixel pairs. Given a center pixel x, the two
diagonally opposite pixels are given by x±r, and the vector
between them is ~v = 2(x− r), so

Ψa(x, r, z) = 2‖r‖
proj~v(ua(x+r,z))+proj~v(ua(x−r,z)) , (10)

fnCS,a (x, z) = max { Ψa(x, ri, z) : ri ∈ NCS} (11)

where NCS is half the n × n neighborhood, excluding x.
Since flow fields are invalid at regions of occlusion, flow
computed here is untrustworthy. [27] demonstrated a prin-
cipled metric of uncertainty. They trained a classifier where
flow under a certain end point error (EPE) is labeled as re-
liable or not. The resulting posterior indicates flow con-
fidence, which tends to be low at motion discontinuities
and occluded pixels. We use their implementation to train
4 × k (the number of flow algorithms) classifiers: two for
fFCEPE,a based on EPE, and two fFCAE,a based on angular er-
ror, where the respective thresholds τEPE and τAE have high
and low versions.

Flow confidence is a useful indicator since flow at oc-
clusions varies arbitrarily from the ground-truth. Although
some flow methods find occlusions and smooth flow in
these areas, others produce fields by turning a blind eye to
these regions. This indicates that across flow algorithms, re-
sults over occlusions can be quite arbitrary. A feature which
indicates this variance in motion vectors across the k flow
techniques is

fFA (x, z) = E
[
(θai(x, z)− E [θa(x, z)])

2
]
, (12)

where ai ∈ [1, k]. Similarly, the variance of motion vector
length across flow algorithms is

fFN (x, z) = E
[
(Mai(x, z)− E [Mai(x, z)])

2
]
. (13)

Finally, to compensate for the noise in the temporal gra-
dient feature, we cluster the flow vectors using intensity
based superpixels. First, superpixels for I1 are created us-
ing [30]. Average median flow is assigned to each super-
pixel, and gradient magnitude is taken over this new image
to get coarse flow discontinuities. The discontinuities are
dilated by a small Gaussian kernel. This gives the flow-
discontinuity feature fSP.
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Reverse Flow Features Flow in both directions between I1
and I2 can be computed. Given perfect bidirectional flow
fields, a pixel advected from I1 to I2 using ua(x) and back
using u′a(x′) should return the pixel to its original location.
This is not true for occluded pixels, as they flow to unde-
fined locations. Similar to the approaches in [1, 19, 31],
we find this disparity in forward and reverse flow by taking
the Euclidean distance between the original location and its
position after reverse flow x′a = round (x + ua(x, z)),

fRC,a (x, z) = ‖x− (x′a + u′a(x′a, z)) ‖. (14)

u′a(x′a, z) is the reverse flow at scale-space level z using
flow method a. Following the same argument, the reverse
flow direction at non-occluded pixels should be nearly op-
posite of the forward flow direction, except in cases of er-
rant flow in regions of occlusion. We compute this reverse
flow angle consistency as

fRA,a (x, z) = |π − arccos [ua(x, z) · u′a(x′a, z)] |. (15)

In all, we use a d = 227 dimensional feature vector fi,
which is computed for each pixel, using the flow algorithms
set K = {1...4}, two scale-space choices S1 = {1...4} and
S2 = {1...10}, and parameters given in Section 4:

fi =
{
fED (x, S2) , fPB (x, S1) , fPC,K (x, S1) , fnST,K (x) ,

fSTm,K (x) , fTG (x, S2) , fnAV,K (x, S1) , fnLV,K (x, S1) ,

fnCS,K (x, S1) , fRC,K (x, S2) , fRA,K (x, S2) , fSP (x) ,

fFA (x, S2) , fFN (x, S2) , fFCEPE,K
(x) , fFCAE,K

(x)
}
(16)

4. Experiments
We investigated several different parameter settings for

our features by training classifiers using only these features
and observing the results. We used the dataset from [27]
in addition to new sequences1 during this optimization. Af-
ter experimenting with a range of window sizes (up to n =
9) for {fnAV,a (x, z) , fnLV,a (x, z) , fnCS,a (x, z)} we choose
n = 3. For fnCS,a (x, z) we experimented with min., max.
and the variance in collision time, and found them to be
equivalent to each other, and hence only used max.. We
also did a similar experiment for fnST,a (x) with window
sizes up to n = 45, and found that n = 3 gave the best
ROC scores. We use values of 0.1 and 0.4 for τPB to exploit
low and high confidence edges. To evaluate the flow confi-
dence features, two thresholds were chosen for the angular
error and EPE versions. The values of τEPE = {1, 50} and
τAE = {1◦, 60◦} were chosen to measure confidence on a
fine and coarse level. We choose the following parameters
for the Random Forest: 35 maximum depth of a tree; 11 ran-
dom features per node; and 105 trees. The resulting feature
importance and computational costs are given in Figure 1.

1All training sequences were generated using the code from [27]. Our
training data is available from our project webpage.
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Figure 1. Feature importance returned by Random Forests and re-
spective feature computational cost. The left scale gives the mean
feature importance during leave-one-out tests; while the right scale
gives the mean feature computation times. These values help us
build our lean classifier, where we keep only features whose com-
putation times are below the blue threshold.

4.1. Quantitative Results

We evaluate our algorithm on data where ground truth
occlusions were available, reporting the area under the Re-
ceiver Operator Characteristics (ROC) curves and display-
ing the Precision-Recall (PR) curves. We detect occlusion
regions caused by the camera changing its FOV seemingly
easily. In addition to scores for Full Ground Truth (FGT),
we also compare against Cropped Ground Truth (CGT),
where those pixels that leave the frame are not counted.

Leave-One-Out Table 1 gives leave-one-out scores for the
ground truth dataset. In general, we train on 13 sequences,
but some are the same scene from two different viewpoints.
Obviously, the leave-one-out experiments actually leave-
two-out to test correctly in such situations. For all sub-
sequent experiments unless otherwise stated, the classifier
was trained on this synthetic dataset, because there were
usually visible mistakes in the ground truth occlusion re-
gions of other relevant datasets.

Figure 2 gives quantitative results for a subset of our
dataset with PR curves. Our posteriors correlate well with
the ground truth occlusion regions. We are not mislead by
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Figure 2. Quantitative results. Each row represents a different test
example (BrickBox1t1, Mayan10, and Venus respectively) with
the corresponding first image from the pair, ground truth occlu-
sion, our probability of occlusion, and a PR curve for the FGT.
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Crates1 Crates2 Robot Sponza1 Sponza2 Crates1txtr Brickbox1t1 Brickbox2of Mayan1 Text1

Single FGT 0.564 0.658 0.536 0.633 0.640 0.511 0.766 0.604 0.508 0.626
Lean CGT 0.826 0.758 0.851 0.945 0.814 0.981 0.979 0.641 0.952 0.973
Lean FGT 0.950 0.961 0.922 0.940 0.929 0.996 0.986 0.981 0.976 0.985
Our CGT 0.744 0.682 0.876 0.947 0.812 0.991 0.989 0.618 0.973 0.982
Our FGT 0.942 0.969 0.936 0.947 0.928 0.997 0.992 0.991 0.986 0.991

Table 1. Leave-one-out scores reported as area under ROC curve. The first row shows results when using the single image features;
second and third rows gives results of our lean classifier on CGT and FGT respectively; fourth and fifth rows gives results for the full set
of features on CGT and FGT.

Figure 3. Qualitative results of our algorithm with data from [37, 5, 33, 36, 35]. Our posterior probability of occlusion is shown below the
corresponding first frame from the image pair. For further results, please see the supplementary material.

scene texture, and while there is a small probability asso-
ciated with some of the image gradients which do not get
occluded, there is a much higher probability assigned to
the actual occlusions. The advantage of our posterior is
that it can be thresholded at any operating point, depend-
ing on the confidence required. We perform slightly worse
on the Venus sequence, but as this ground truth was created
by hand it may contain errors which decrease our apparent
performance.

Additional qualitative results on natural sequences which
have no ground truth are presented in Figure 3. For more
results, please see the supplementary material.

Comparisons to Other Methods To emphasize the impor-
tance of using temporal information when classifying oc-
clusion regions, we compare our results against a classifier
trained only on features extracted from a single image. For
this feature set, we ignored all the features which have a
temporal element, training on the remaining ones. The first
row in Table 1 reports scores for this single image occlusion
detector. As expected, the results are better than chance but
much worse than using temporal information.

We perform a quantitative analysis between our algo-
rithm and that of Kolmogorov and Zabih [23]. Their al-
gorithm is specially designed to detect occlusion in stereo
image pairs, so was not intended for general scenes. Nev-
ertheless, like [3] we use it as a baseline algorithm. For all
sequences, the maximum number of iterations for their al-
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Recall [23] 0.60 0.23 0.44 0.36 0.15 0.82 0.51
Recall (Ours) 0.59 0.23 0.43 0.49 0.83 0.82 0.51
Precision [23] 0.63 0.31 0.58 0.33 0.10 0.68 0.49
Precision (Ours) 0.69 0.47 0.85 0.99 1.0 0.88 0.96

Table 2. Occlusion region labeling comparison between our algo-
rithm and Kolmogorov and Zabih [23].

gorithm was set to 50, the min and and max disparity range
for x and y were both set to −15 and 15, and λ was cho-
sen automatically by their algorithm. There is presently no
publicly available dataset specifically designed for occlu-
sion regions in natural scenes with accurate ground truth.
We use sequences from the Middlebury optical flow and
stereo datasets [5], with hand relabeling of incorrect regions
for some of the sequences, and removal of a 10 pixel border
region. Additionally, we report results for our own synthet-
ically generated sequences with trusted occlusion regions
based on code from [27]. This data is made available on
our website for future comparisons. Table 2 gives the preci-
sion and recall results for the two algorithms. [23] returns a
binary occlusion mask, so to make a fairer comparison, we
first compute their recall and precision, and report our pre-
cision at the closest equivalent recall rate. We outperform
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Figure 4. Results for varying scene texture and occlusion re-
gion size. The two rows represent the same scene with different
background texture. For the second frame, the camera was rotated
about the nearest corner of the wooden box in the foreground along
the x axis for 1◦, 4◦ and 7◦. The PR in each column reports results
on the FGT for different amounts of occlusion.

the baseline in all tested sequences.
Changes in Scene Texture and Occlusion Region Size In
the final quantitative experiment, we tested how our algo-
rithm’s accuracy varies with scene texture and size of occlu-
sion regions. We have modified a synthetic scene by making
two texture variants and three occlusion size variants. The
occlusions in the Crates1 sequence are due to egomotion.
The PR curves in Figure 4 show our algorithm coping well
with different amounts of occlusion. As the angle increases
the performance decreases, but not dramatically. Lack of
scene texture is a more noticeable challenge, due to the di-
minished performance of features based on flow.

5. Applications
We demonstrate a possible use for our occlusion region

detection algorithm. We also present a sped up version of
our classifier, which gives comparable results but at a sig-
nificantly reduced computational cost.
Occlusion-Aware Over-Segmentation Many video pro-
cessing pipelines use an initial over-segmentation as a pre-
processing step [41]. These techniques typically group sim-
ilar colored pixels while respecting image boundaries in a
single frame. By ignoring occlusions in the scene, the su-
perpixels may contain a mixture of foreground and back-
ground objects, or pixels that will disappear. These mixed
superpixels can prove difficult to match between frames for
tracking or segmentation. We have applied our occlusion
posterior to create occlusion-aware superpixels.

The publicly available superpixel code from Mori et
al. [30] uses the Pb boundary detector of [29] to provide an
edge map. This detector attempts to classify boundaries in
natural images by training on hand labeled edge maps. We
augment this boundary map by combining it with our occlu-
sion posterior. [30] expects boundaries and not regions, so
we first convert our posterior into a boundary edge map. To
regularize our posterior and create such a binary occlusion
map, we pose and solve this as a graph labeling problem [7].
The occlusion posterior is used as the unary term, and the

pairwise term is set at a constant weight of 0.25 for all ex-
periments. Edges of this binary mask are then extracted and
combined with the Pb boundary map by taking the maxi-
mum in each location. Figure 5 shows the results for an
image pair of a natural scene with static camera and a mov-
ing foreground object. It can be seen that the introduction
of our occlusion term produces an over-segmentation which
respects image edges, region color, and occlusions.

Lean Feature Set Our current implementation achieves ac-
curate results but at the expense of long computation times.
Thanks to the broad spectrum of features examined and
importance-assessed by our Random Forest, we can experi-
ment with a stripped down version of our feature set. We re-
moved families of features by examining the feature impor-
tance graph in Figure 1 along with the computational cost
associated with computing each family. We keep the fea-
tures whose combined computation time is under 2 mins,
illustrated by the dashed horizontal line in the figure. Ta-
ble 1 reports results for this Lean version of our algorithm
for both full and cropped ground truth, and visual compar-
isons are in the supplementary material. With this reduced
feature set, training time (excluding feature extraction) was
reduced from 54 to 25 mins for approximately 80,000 data-
points (13 sequences). Then, feature extraction and testing
takes 1.3 as compared to 124 mins for an image pair.

6. Conclusions
We have presented a general purpose method of detect-

ing occlusion regions in image sequences. We do not make
assumptions about the scene type and have illustrated re-
sults for occlusion due to egomotion and both rigid and
non-rigid scene motion in real sequences. By posing the
problem in a supervised learning context, we learn features
from the data which correlate with occlusion. This gives us
an advantage over existing methods which rely on manual
tuning of parameters.

We have evaluated our algorithm quantitatively on syn-
thetic data and compared our performance to two baseline
systems (single image and stereo based methods). We have
also evaluated the impact of texture and motion extent on
the accuracy of occlusion region detection. Due to the fea-
ture selection step in our algorithm, we are not limited to
finding occlusions which only coexist with image edges.
However, our performance does decrease with a reduction
in scene texture.

A lightweight version of our algorithm which trains on
a reduced set of the full feature vector is proposed. It
gives performance comparable to our full version, but at a
much reduced computational cost. Future work will include
the development of a spatio-temporal superpixel algorithm
which explicitly takes our occlusion posterior into account,
and exploration of non-local features to help cope with dras-
tic motions and very low texture.
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a) b) c) d) e)

Figure 5. Occlusion-aware over-segmentation. a) First frame from a two frame sequence of a person walking forward [37]. b) The
occlusion posterior of our algorithm has correctly labeled the region in front of the right and left legs as being occluded in the second
frame. Note that the algorithm does not label the dis-occluded regions at the backs of the leg as occluded. c) Regularized posterior using
graph cuts. d) Over-segmentation using only boundary information from a single frame. e) Over-segmentation using additional occlusion
region information. By comparing the occluded regions (superimposed with higher intensity) to the right of each leg and hand in d) and e)
it can be seen that the occlusion-aware over-segmentation of e) respects both the image and occlusion boundaries.
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