
Learning Occlusion Regions

by

Ahmad Humayun

Submitted to the Department of Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science

Computer Graphics, Vision and Imaging

at

University College London

September 2010

Supervisor:

Gabriel J. Brostow

Disclaimer

This report is submitted as part requirement for the MSc. Degree in Computer Graphics, Vision and
Imaging at University College London. It is substantially the result of my own work except where

explicitly indicated in the text.

The report may be freely copied and distributed provided the source is explicitly acknowledged.

Learning Occlusion Regions

by

Ahmad Humayun

Submitted to the Department of Computer Science on Septemeber 7th 2010

in partial fulfillment of the requirements for the degree of

Master of Science
Computer Graphics, Vision and Imaging

Abstract

Pixels occluded from one frame to the next pose a significant problem for algorithms computing motion,
depth, or temporal segmentation. Finding these occlusions is non-trivial especially in scenes lacking
texture or in sequences undergoing large motion.

This thesis develops a supervised learning method to identify regions of occlusion in a two frame se-
quence. The algorithm’s main contribution is a set of features that correlate with occlusion regions, and
a flexible classification framework to use these features. The thesis offers a review of relevant literature, a
detailed description of the algorithm, and analysis on both synthetic and natural sequences in comparison
to competing algorithms.

Thesis Supervisor : Gabriel J. Brostow

Acknowledgements

I would like to acknowledge the following, without whom this thesis would have not been possible:

• To God who has been most Gracious, most Merciful.

• To my parents, Asaf and Naheed Humayun for their love, patience and constant encouragement for
all my pursuits.

• Gabriel Brostow, my advisor, who helped me learn more about Computer Vision and introduced
me to the interesting field of Machine Learning.

• Oisin Mac Aodha, who allowed me the time and critical thoughts to learn more about my thesis.
He went the extra mile to proofread my thesis and collect the datasets herein.

• Sohaib Khan, without whom I might never have endeavored in the field of Computer Vision and
academic research.

• My sister and brother-in-law who accepted me whole-heartedly in their abode at London.

• All my friends at UCL who have helped me make this thesis better through their advice and
discussion.

i

Contents

1 Introduction 1
1.1 Goals . 2
1.2 What is Optical Flow? . 2
1.3 What is an Occlusion? . 3
1.4 Supervised Learning . 4
1.5 Algorithm . 5
1.6 Organization . 5

2 Related Work 6
2.1 Optical Flow . 6
2.2 Motion Segmentation . 8

2.2.1 Occlusion resolution . 11
2.3 Learning (Feature selection) . 12

3 The Occlusion Classification Algorithm 16
3.1 Learning . 16

3.1.1 Classification Trees . 17
3.1.2 Random Forests . 20
3.1.3 Implementation . 23
3.1.4 Learning Framework Alternatives . 23

3.2 Feature Set . 24
3.2.1 Features on Image Properties . 24
3.2.2 Features based on Optical Flow . 27
3.2.3 Other Features experimented . 31

4 Evaluation / Experiments 34
4.1 Methodology of Evaluation . 34
4.2 Training Dataset . 35
4.3 Random Forest Evaluation . 37

4.3.1 Random Forest Parameters . 37
4.3.2 Random Forest Training Set . 39

4.4 Features . 40
4.4.1 Final Feature Set . 44

4.5 Cropping out-of-FOV regions . 45
4.6 Effect of Texture . 47

ii

4.7 Using ground-truth flow . 49

5 Results 51
5.1 Results on Sequences with GT . 51
5.2 Comparative results on Stein and Hebert [50] dataset . 51
5.3 Results on Sequences with no GT . 56

6 Conclusions and Future Work 58
6.1 Future Work . 58

Appendices 60
.1 Code Appendix . 60

Bibliography 113

iii

List of Figures

1.1 Shows the two common optical flow representations . 3

1.2 Ground-Truth occlusion/visibility maps from Strecha et al. [54]. Each panel shows visibility
in both dirextion of the sequences. The first row in both panels show the input images
I1 and I2. The second row shows occlusions overlayed in red. These are identified by
geometric visibility reasoning on dense 3D point clouds obtained using LIDAR 4

2.1 Shows the steps involved in resolved occlusion boundaries in Stein and Hebert [50]. Taken
from Stein and Hebert [50] . 13

3.1 Comparison of 4 clustering methods. Although the first 3 methods are unsupervised and can
only be used for classification (not regression), it is still interesting to view their clustering
techniques in comparison to Classification Trees. k -means (shown in 3.1a) clusters data
according to the nearest mean, while Mixture of Gaussians (shown in 3.1b) fits multi-variate
gaussians to encompass the data. In contrast, Linear Discriminant Analysis finds a linear
transformation which best separates the data (the axis is shown in 3.1c). Classification
Trees (3.1d), with the help of training samples, partitions the input space, concentrating
more on areas which are harder discriminate. 18

3.2 The graph shows a typical case of training and testing errors with the increase in the number
of training cycles (number of nodes in case of a Classification Tree). The practitioner of
any supervised learning method aims to find the point of best generalization. Beyond this
point, more training data results in overfitting. 19

3.3 Shows the process of building a Classification Tree using the Gini criterion. The decision
nodes in the tree are given as gray boxes, and the leaf nodes as green triangles. The rounded
rectangles show the outcome label Y at each leaf node. Each table pointing to a decision
node gives the data in question at that node. The left-most table, pointing to the root
node, shows the complete set of 8 training observations. Apart from the values xi, the
information gain I(t) using Gini “impurity” is also given as sub-scripted dark blue values.
These values are computed by splitting data xi < Ti and xi ≥ Ti. The I(t) selected for
splitting the data is given in white (blue rows for < Ti and red rows for ≥ Ti). 20

3.4 Example of a Random Forest training phase. The table on the left shows 6 training data
points each with 7 variables/features. 3 trees from the forest are shown. Each tree has
its own bootstrap sample Tk which is used for building the tree. The remaining training
samples T̂k, given in the bottom row, are used as the out-of-bag data. Also, each node
computes node impurity on only m = 3 random features. 22

iv

3.5 The two images show Photo Constancy output overlayed on the respective images. Regions
marked in green are true positives; regions in red are false negatives; and regions in blue
are false positives. Notice the false positives both in regions of significant texture (crate
and pillar in 3.5a; brick ground in 3.5b) and no texture (wall in 3.5a). 25

3.6 Each panel shows results of texture dissimilarity on two adjacent textures shifted by 30
pixels, using fnST based on A Sparse Set of Texture Features [13]. The textures have been
taken from Brodatz [12]. A window size of n = 41 pixels is used for computing a texture
patch. Both 3.6a and 3.6b show a texture image with its shifted version. The bottom row
image shows the texture comparison result as explained in the text. Note the 30 pixels
wide high texture high dissimilarity in both cases - but a higher amount of noise in 3.6b
due to mismatches from long vertical texture streaks. 26

3.7 Illustrates the idea behind the features fnCS, fRC and fnRA. Figure 3.7a shows the compu-
tation of time t for computing the three features of fnCS. This is done by selecting a pixel
from the green region and the diagonally opposite pixel in the blue region; projecting the
flow onto the diagonal; and computing the time. Figure 3.7b shows the computation of
fRC as the distance after loopback flow. Figure 3.7c illustrates fRA as the angle difference
between the two corresponding flow vectors in I1 and I2 30

3.8 3.8a shows Probability of Boundary (Pb.) edge classification result on image given in Figure
4.1c. Notice that each edge is given an edge-strength according to its posterior probabil-
ity of being a surface boundary. Brighter edges shown here are of higher edge-strength.
3.8b shows the Edge Distance feature after thresholding 3.8a at 0.2. In comparison, 3.8c
shows Edge Distance using canny edge detector. Notice the added noise in 3.8c, but the
disappearance of edges of pillar and the right-most crate in 3.8b 32

4.1 Dataset used for training the Random Forest classifier. Each of these is a 2 frame sequence.
The first image for each sequence shows the first frame I1 of the sequence, and the second
image shows the Ground-Truth (GT) flow. 4.1a and 4.1b are the only natural sequences,
taken from the middlebury flow dataset [1]. The areas marked black in the GT are regions
of occlusion. The middlebury dataset marks black regions based on the reliability of tracks
of those pixels - hence, some pixels amongst them are not occluded. These mistakes have
been partially corrected (see Figure 4.2). 36

4.2 Shows some pixels from Figure 4.1a which are marked as unreliable for training the forest.
The left-side shows I1 from the sequence overlayed with the occlusion regions from the
Ground-Truth (GT). The right-side shows an inset of the GT with some errors overlayed
in red. The respective inset from the two image sequence is shown at the bottom. Notice,
how the ceramic behind the shell has moved towards the left - making its right boundary
“visible” rather than “occluded”. Also note the invalid (not-occluded) spots around the
ceramic boundary. Some of these errors have been manually identified and marked in red.
These red regions will not be used for training the classifier. 37

v

4.3 Shows four cases of adjusting parameters on the random forest. All graphs display the area
under the receiver operating characteristic (built by thresholding the output posterior) of
a random forest by cross-validation - training on all sequences except the one it is being
tested on. Note y-axis in all plots are in the range [0.5− 1.0]. Figure 4.3a shows the effect
of changing the number of random features (m) used for computing node impurity. Figure
4.3b shows results of changing the maximum depth a classification tree is allowed to reach.
Figure 4.3c shows the maximum number of trees in a forest is allowed to grow. The last
plot, Figure 4.3d, shows the effect of increasing the minimum number of samples on a node
to allow a split. 38

4.4 Shows two experiments where the samples given to the random forest are varied (see Figure
4.3 for an explanation on ROC plots). Figure 4.4a shows the effect of changing the number
of data points (nc) sampled randomly from each sequence for each class. Figure 4.4b shows
choosing ns number of sequences randomly for training. 39

4.5 Shows four different experiments for finding the right parameters for different features.
All figures show plots of area under the ROC curve (see Figure 4.3 for an explanation
on ROC plots). The first Figure 4.5a shows the effect of increasing the window size for
fnAV, f

n
LV, f

n
CS trained in a single forest. Figure 4.5b plots the effect of varying the number

of image pyramid levels for fPC. The third plot, Figure 4.5c shows comparisons between
fED (computed on a pyramid) against fPB (not computed on a pyramid). Results for
4 sequences are shown for fPB, whereas the horizontal line gives the average area under
the ROC using fED on the same sequences. Note that y-axis in this plot is in the range
[0.0 − 1.0]. Figure 4.5d plots the result of changing the window size used in fST. Results
for 4 sequences are shown, and the horizontal line gives the average area under the ROC
using fSTm for the same sequences. 40

4.6 Comparison of f3
ST (first row) against fSTm (second row). The green overlay over the

image shows true positives; the red overlay shows false negatives; and the yellow overlay
shows false positives. The images were produced by thresholding the posterior output by
the forest with a threshold using Equation 4.1 where CFP = 1 and CFN = 10. Notice how
fSTm does better on regions with little texture as compared to f3

ST. On the other hand,
fST3 does better than fSTm on textured regions. 41

4.7 Performance of random forest on sequence 4.1b using the different set of features. Images
on this page are overlayed with the posterior output using the method explained in Figure
4.6. 43

4.8 Shows the performance of random forest on sequence 4.1c using the different set of features. 43

4.9 Shows the performance of random forest on sequence 4.1i using the different set of features. 43

4.10 The graph shows the relative importance of variables assigned by the random forest as a
result of training. The values are obtained by averaging all the variable importances output
when cross-validating the 10 sequences given in Section 4.2. The forest was trained with
the features finalized for our classifier. Each feature type is printed on top of the graph. . 44

vi

4.11 Shows the effect of texture on the classification accuracy. Each ROC plot is produced by
training and testing a classifier on one of the 4 images on its right. The plot’s legend
indicates which curve was produced by which texture sequence. The legend also gives the
respective area under the curve statistic. Seq. 4.11b and Seq. 4.11g are the original images
from the training dataset. Seq. 4.11c and Seq. 4.11h are produced with a slightly enhanced
texture. Seq. 4.11d/4.11e and Seq. 4.11i/4.11j are produced by replacing all “no-texture”
planes with significant texture. The images on the right are overlayed with the posterior
output using the method explained in Figure 4.6. The lighting, object placement, and
camera FOV were kept constant in both experiments. 48

4.12 Shows comparative results when using GT flow. The first row in each column shows I1
for the sequence; the second row shows the GT produced using GT flow; the third row
shows the output posterior when the random forest is trained with features using the GT
flow; and the fourth row shows the posterior when the forest is trained as normal (using
the 6 flow algorithms). Below each posterior output, the area under the ROC curve is given. 50

5.1 Shows the GT evaluation using two sets of sequences, both taken from Mac Aodha et al. [29].
The first row shows results with the robot sequence. Images in this figure are overlayed
with the posterior output using the method explained in Figure 4.6, except Figure 5.1b,
which is the direct posterior output of the classifier. The second row and third row gives
results on the 10 frame grass-sky sequence. All area under the curve of ROC are given in
captions. 52

5.2 Shows results on evaluation sequences which have no GT. Sequences have been taken from
Baker et al. [1], Zitnick et al. [68], and Scharstein and Szeliski [44]. The first row shows the
input image I1 of the sequence. The second row gives results on the respective sequences.
Lighter values indicate a higher posterior probability. 55

5.3 Classification results on table sequence from Liu et al. [27]. 57

vii

List of Tables

4.1 Shows the results of training a random forest with the features in the left column. Each
column shows the result on a sequence using k-fold cross-validation. Each cell gives area
under the ROC curve (see Figure 4.3 for an explanation on ROC plots). Features below
the thick line are not included in the final set of features. The dark gray row shows results
using all the features finalized in a single random forest. The two lighter gray rows give
results of training a forest using a small subset of the features. 42

4.2 Shows the comparison of a forest trained and tested over all pixels against a forest trained
and tested only over pixels which remain inside the field-of-view (FOV) over the sequence.
The header shows the sequences and the mask used to ignore the out-of-FOV pixels. Like
Table 4.1, each column shows the result (area under the ROC curve - AUC) on a sequence
using k-fold cross-validation. The values in gray show the percentage difference in AUC
while training with or without the pixels out-of-FOV (results when including out-of-FOV
pixels shown in Table 4.1). The dark gray row shows results using all the features finalized
in a single random forest. Note the effect on the classification accuracy when the number
of out-of-FOV pixels is significant (sequences 4.1c, 4.1d, 4.1f, 4.1g, and 4.1h). 46

5.1 Comparative results against the occlusion boundary GT and results provided by Stein and
Hebert [50]. The first column of images shows the middle frame on which [50] computes
occlusion boundaries. The frame is overlayed in red with the GT object layer boundaries.
The second column shows the boundary fragment GT created using the segmentation
method discussed in Section 2.2.1 and fragment chaining. Stein and Hebert [50] use this
GT for training their classifier. Their results are given in the third column. Note all GT
was is provided by Stein and Hebert [50]. The last column shows our results where color
ranges from green (low occlusion region probability) to yellow (high probability). 53

5.2 See Table 5.1 for the description. 54

viii

Chapter 1

Introduction

Occlusion resolution has long been a subject in cognition and visual perception. Researchers have explored
both the idea of completion of shapes behind occlusions [42, 30, 60] and the identification of occlusion
regions [20]. In the field of Computational Vision, methods have been proposed to compute occlusions
with depth maps [56, 53] and flow fields [52, 38].

One may ask why is it even important to locate these regions? Finding these regions accurately
has benefits across many techniques in vision. In flow computations, algorithms which lack knowledge
of occlusions perform particularly badly near such regions. In some cases they try to compress regions
incorrectly to make room for pixels which were actually occluded. Hence, not finding occlusions not only
hurts the performance of flow algorithms on regions of occlusion, but also on the nearby pixels. This is
especially true when occlusions occur on textureless surfaces.

For computation of depth for stereo, the need for locating occlusions is apparent. Not finding them
can lead to incorrect assumptions of disparities in pixels. Like flow, the performance hit on nearby pixels
can occur during regularization. On the other hand, finding occlusions in a stereo framework can help
derive some parts of the scene structure.

Even in motion segmentation frameworks the knowledge of occlusions can be critical. One way of
computing layer ordering of pixels is to find the occluded pixels and then reason on the ordering of
adjacent layers. Finding the correct relationships between these regions can help establish the ordinality
of object layers (what went on top of what). A few methods, like Ogale et al. [38], solely reason on
occlusions to help establish ordinality of layers.

Given that techniques for flow, segmentation, stereo, shape and depth estimation are all entangled in
a “chicken-and-egg” relationship, Ogale and Aloimonos [36] argues that these early vision methods can
only succeed if regions of occlusion are identified.

Having established that finding occlusion regions is important, we propose a method in this thesis for
classifying pixels as occluded or not in a learning framework. The key contribution is the development
of simple features to train a classifier in a supervised manner. Since we are finding occlusions, where
temporal reasoning is critical, one of the key concerns discussed in our thesis is what to use to develop
such reasoning. The natural method would be to opt for a particular optical flow algorithm and build
features using it. This technique might not be ideal since flow on occlusions is an under-constrained
problem, and depending on a single algorithm will make it the weakest link in our framework. To counter
this, we use a set of candidate flow algorithms to build features with temporal reasoning over the scene
(see Section 3.2.2).

1

Ahmad Humayun Chapter 1: Introduction

The other key-point to discuss in a supervised learning framework is the training dataset. Although
there is a paucity of occlusion training sets, we ensure that our training samples are representative of both
synthetic and natural sequences (see Section 4.2).

Before we overview our algorithm (Section 1.5), we will discuss the goals of this thesis and develop an
understanding of the related key concepts (flow 1.2 and occlusions 1.3). We will also discuss what is a
supervised learning method in general in Section 1.4.

1.1 Goals

The goal of this research is to explore a new framework for detecting occlusion regions and how current
techniques in this domain may be improved in a learning-based approach. We hypothesize that given
the right set of simple features for detecting occlusions, a classifier can be trained to give results more
accurate than the ones produced by any single feature in the set. We will develop features which work
on image properties and on the flow of pixels - even though we use a framework which is open ended for
practitioners looking to add new features. The attractiveness of learning methods lie in the ease provided
in extending the input feature vector. The thesis uses a supervised learning scheme (see 1.4), one which
intelligently applies the features provided as need be and ignores features that perform unfavorably.

The motivation for building this framework is to provide a tool which assists in motion segmentation,
optical flow, stereo techniques. As discussed in the opening paragraphs of this chapter, occlusions play a
critical role in these techniques, yet there is no single standardized technique to classify such pixels. Our
thesis aims to fill this void.

Finally we would compare our results to the current state-of-the-art techniques for detecting occlusions.

1.2 What is Optical Flow?

The problem of optical flow helps establish the direction of motion in two or more images. Most of the
earlier techniques computed these “motion vectors” for each individual pixel. Algorithms proposed later
exploited the constancy of motion across planar segments of images. Optical flow can be thought of a
specialized segmentation problem itself (see p. 12, Ross [43]) - segmenting a set of images into regions
of motion. Current advancements in optic flow help improve segmentation of motion by concentrating
efforts on discriminating regions across motion boundaries.

Figure 1.2 shows two representations used to display optical flow results. Figure 1.1d shows the
representation in which the different flow vectors are painted using a colour wheel.

Formally, optical flow is defined as follows: given two images I1, I2 and regions in them r1
i , r

2
j , optical

flow defines two things: correspondence in regions i.e. r1
x ≡ r2

y, and the motion parameters Θ12
xy that

transform r1
x to r2

y. As explained above, earlier optical flow schemes operated on individual pixels, in which
case r1

i would refer to individual pixels in image 1, and the motion model Θ could only be translational.
In frameworks which deal with regions/segments, r1

i would refer to a collection of contiguous pixels and
the motion model could be anything from pure translational to projective.

Most segmentation and optical flow schemes are riddled with the same set of problems. The most
discussed/researched problem out of them is the problem of finding accurate segmentation or optical flow
for regions close to motion boundaries. Interestingly, occlusion regions tend to lie next to these motion
boundaries. Most techniques, in both domains, model this problem explicitly in fear of failing on these
contentious boundaries. This possibility of failure is largely due to priors in respective techniques in
order to make them tractable: many optical flow techniques demand that pixels/regions don’t change

2

Chapter 1: Introduction Ahmad Humayun

(a) Input image 1 (b) Input image 2

-�
�
�
�
�
���

A
A
A
A
A
AAU

(c) Flow vector representation

(d) Color encoded flow representation

Figure 1.1: Shows the two common optical flow representations

some image property (like brightness or texture) as they move; similarly algorithms for segmentation on
monocular images suppose that object discontinuities usually coincide with colour/texture discontinuities.

Shi and Malik [46] point out that early approaches for optical flow took clues from discontinuities only
in a post-processing step. This proved disadvantageous for mainly the following reasons:

1. Large planar regions with one-dimensional or no texture are notorious for simple optical flow tech-
niques. Discontinuities carry key to solving these regions correctly.

2. To solve (1), smoothing constraints were proposed to interpolate flow fields. But to incorporate
some smoothness constraint, the image needs to be segmented before hand to avoid smoothing over
discontinuities!

This provokes the thought that the optical flow and segmentation are intimate problems. Moreover
segmentation without the knowledge of occlusion will fail temporally, as segment assignment over time
would be inconsistent with the actual surfaces in the scene. This necessitates for a framework that
computes motion to also look at temporally consistent segmentation, which in turn requires the knowledge
of occlusion regions.

1.3 What is an Occlusion?

Now that we have formulated the problem of flow, we are equipped to discuss occlusion. Establishing point
correspondence between a pair of images involves pairing a point in one image to a unique point in the
second image. Due to changes in visibility, there are some points in both images which cannot be mapped

3

Ahmad Humayun Chapter 1: Introduction

(a) Fountain-P11 I1 (b) Fountain-P11 I2

(c) Occlusions in I1 from I2 (d) Occlusions in I2 from I1

(e) Herz-Jesu-P8 I1 (f) Herz-Jesu-P8 I2

(g) Occlusions in I1 from I2 (h) Occlusions in I2 from I1

Figure 1.2: Ground-Truth occlusion/visibility maps from Strecha et al. [54]. Each panel shows visibility
in both dirextion of the sequences. The first row in both panels show the input images I1 and I2. The
second row shows occlusions overlayed in red. These are identified by geometric visibility reasoning on
dense 3D point clouds obtained using LIDAR

to any corresponding point; these points are said to be occluded. Thus, the problem of establishing
image correspondence is intimately connected to the problem of finding the occlusions or points without
correspondence [36]. Notice that pixels might go through changes in perspective, lighting, or even changes
in the camera parameters which makes correspondence hard. Optic flow algorithms are left to tackle with
most of these situations. Even if a flow algorithm indicates that it cannot find a reasonable correspondence
for a certain pixel, it will be hard to tell if this was either due to large change in the visible characteristics
of a pixel or because the pixel was actually occluded.

One of the key contributions of this thesis is finding outputs of flow algorithms which are reminiscent
of occlusions. Even if we can identify the right set of features to compute over flow, the interaction
between these features might be non-linear, making it hard to build a heuristic manually. Hence, to find
the techniques that work and those that do not, we will use a classifier which intelligently picks the right
combination of features for optimal classification.

1.4 Supervised Learning

Supervised learning, is the name given to machine learning methods where the output is computed by
using the correlation learned between the input features and output labels from training examples. Such
methods are well discussed in the machine learning domain. A supervised learning method aims to provide,
a single, accurate solution given a data-point which might comprise of multiple features/variables. The
classifier’s performance increases with the quality (correlation with the output) of these input features. In
this thesis we are more interested in the problem of achieving optimal performance on a classifier rather
than reducing our feature set to an ideal size. The reason for this decision will become apparent when we
discuss the classifier we use.

4

Chapter 1: Introduction Ahmad Humayun

Mathematically, a classifier can be considered as follows. Given a feature set x ∈ RM , we need to
produce a label Y , such that g : RM → Y . Of course, this will be only possible with the perfect set
of features - but in usual cases the classifier is obtained in a way to minimize the misclassification rate.
Note, the aim of the training phase for a supervised classifier is to define the function g. In our Occlusion
Classification Algorithm, the label Y is a binary label indicating occlusion or not and x is the feature set
used to find it.

In the cases we will discuss, x would belong to a single pixel containing a set of spatio-temporal
features. We find that the random forest classifier is ideal for our purposes (see Chapter 3.1.2), because
of its flexibility and performance.

1.5 Algorithm

The components of our Occlusion Classification Algorithm are discussed in depth in Chapter 3. Our
approach takes inspiration from two methods in particular. It uses a learning framework quite similar to
Mac Aodha et al. [29]. Using both temporal and spatial image properties, they suggest training a random
forest to predict which of the k flow algorithms would give the most accurate flow on a pixel. A more
closely related method is given by Stein and Hebert [50], which attempts to detect occlusion boundaries
using motion and appearance cues trained with Adaboost [16].

Like all other supervised learning methods, we first need to train before we test any data with our
classifier. The following are the steps used to train our classifier:

1. Given the input sequence, I1 and I2, compute flow using the set of k flow algorithms (Section 3.2.2).

2. Compute the set of M features x = {f1, f2, . . . , fM}. Some of these features will use output of the
k flow algorithms.

3. Train a random forest classifier sampling pixels for features across multiple sequences. Formally,
this step finds the trained classifier function g (see Section 1.4)

Once our classifier is trained, we use the following method to test data:

1. Perform the first two steps done in training for all pixels of the sequence we want to test.

2. Use all the computed features to test all pixels in the classifier. This returns a classification for each
pixel i.e. g : x→ Y .

Given these step, we will discuss the construction of random forests and the set of our features in Chapter
3 in detail.

1.6 Organization

The thesis is organised into 4 chapters (excluding this one). First we survey the related work in the field
of occlusion detection in the next chapter (2). Here, we will also briefly survey techniques in optical flow,
motion segmentation, and some pertinent learning frameworks. These are relevant since all of them are
related to the problem of finding occlusions. We next discuss our Occlusion Classification Algorithm in
detail in Chapter 3. Once the framework has been defined, we put it to test in the evaluation chapter (4).
We also test it on unseen sequences beyond the initial training and testing data in Chapter 5. Finally
we conclude in Chapter 6, with a motivational segmentation example as an application of our framework.
The code is listed in the glossary.

5

Chapter 2

Related Work

This chapter gives an overview of the literature in the area of optical flow (Section 2.1), motion seg-
mentation (Section 2.2), occlusion detection and resolution (Section 2.2.1) and interesting applications of
learning (Section 2.3. Since each of these areas have huge corpus of literature, it would be impossible to
survey them completely. Apart from discussing seminal works, this chapter will review publications that
have found use in both optical flow and occlusion resolution. It will also devote a thorough section on
motion segmentation techniques and, lastly, algorithms that apply (supervised) learning schemes.

2.1 Optical Flow

As discussed in Section 1.2, computing motion flow has a lot of uses in many computer vision algo-
rithms. Yet for them to be used as effective tools, they need to resolve motion accurately even at motion
boundaries. This section will explore a very small section of literature related to optical flow which ei-
ther concentrates on motion / intensity discontinuities, or smoothly / linearly varying regions using some
special scheme.

One of the earliest approaches for dense motion estimation, Heitz and Bouthemy [23] uses multiple
complementary constraints in an attempt to preserve motion at boundaries. The first constraint it uses
is on Gradient-based motion. Initially proposed by Horn and Schunck [24], it suggests:

~∇f(s). ~ws + ft(s) = 0

where f(s) is the velocity vector at a particular point, ~∇ is the spatial image gradient, and ft is the
temporal intensity gradient. This equation shows that only the flow parallel to the spatial image gradient
can be recovered if we only rely on local computation. This is the well known aperture problem. This
was tackled earlier by either supposing smooth velocity variations across the image or invariant velocity
in a small neighbourhood. The second edge-based motion constraint is used by thresholding the log-
likelihood ratio test based on parameters defined on a surface, where each parameter is tuned to detect
edge-locations, orientation and displacement. This paper introduces validation of these constraints using
hypothesis testing. This is followed by using image features as observations in a Bayesian estimation
process, used to extract motion labels for each portion in the image. The relationship between the
observation fields and the labels in this process is specified using an MRF.

It has been argued that the constraints used in the Bayesian method significantly increases the compu-
tational complexity of the method. To tackle this, Chang et al. [15] introduces interdependence between

6

Chapter 2: Related Work Ahmad Humayun

the optical flow field and the segmentation map directly through the Bayesian framework. It uses a mo-
tion field as a sum of a parametric field and a non-parametric residual field. This helps it conveniently
resolve segmentation and optical flow by simply finding the parameters for the parametric field using a
least squares solution. The optical flow field is refined by computing the (non-parametric) minimum-
norm residual field given the best estimate of the parametric field, under the constraint that the motion
field needs to be smooth within each segment. This gives the best estimates for the motion field and
segmentation. The segmentation portion of this method will discussed further in Section 2.2.

Shi and Malik [46] introduces a graph based approach to estimate flow fields and motion segmentation
(discussed in Section 2.2). It forms a graph G = (V,E) which are pixels connected in its spatiotemporal
neighbourhood with weights (w(i, j)) denoting the similarity of motion between two pixel nodes. Although
only motion weights are used, it mentions that weights can also be based on measures such as colour,
brightness, texture, and disparity. It takes the approach of committing motion vectors later in the pipeline,
by initially working with just a motion profile: the probability distribution of the image velocity at each
pixel in the image, which captures both direction and uncertainty:

1

Z
exp(−αSSD[It(xi), I

t+1(xi + u)])

where It and It+1 are the two image patches and α is the weighting, and Z is the normalisation constant.
The weight on the graph is taken as the cross-correlation of the two motion profiles given by Pi and Pj :

w(i, j) = exp(−[1−
∑
dx

Pi(dx)Pj(dx)]/σ2
m)

where σ2
m is the expected variance in the motion profiles. It should be noted that this measure of motion

similarity will, indeed, distinguish between two pixels which have exactly the same true motion, but
different brightness profiles, which would result in difference in associated motion uncertainties. This will
happen if one of the pixels is in a region of constant brightness and another in a region of rich texture.
The method handles this in a post-processing step. Eventually the algorithm summarises and solves all
motion profiles between each pair of pixels as an eigenvalue problem.

In a related approach, Galun et al. [19] proposes to iteratively improve motion flow estimates by solving
systems with increasingly complex motion models. At each level of complexity it chooses seed pixels for
computing optical flow using Shi and Malik [46]. It uses the same cross-correlation method to compare
motion profiles, after smoothing each profile with a Gaussian. These seed pixels are later associated to
individual clusters signifying common motion. A re-estimation step solves for the selected motion models
(according to the iterative level) while estimating a common motion for the cluster. As discussed in
Section 2.2, this helps in combining motion by supposing that all pixels are strongly associated with a
subset of the selected seed pixels.

Following the same idea of employing increasingly complex motion models, Wong and Spetsakis [61]
proposes another motion segmentation method for tracking objects on a static background. The tracker,
in this technique, needs to be initialised with a small seed window which falls inside the to-be-tracked
object in the first frame (it proposes a 10× 10 pixel window). Using Least SSD, it attempts to estimate
the initial optical flow vectors:

LSSD(u, v) = min
(u,v)

∑
x,y∈S

(It−1(y + u, x+ v)− It(y, x))2

where S is the seed window. Since the seed window is small, the search window is set to be relatively
large, going from −30 · · · 30 pixels. To refine the initial estimate of (u, v), it aligns It−1 to It (using the

7

Ahmad Humayun Chapter 2: Related Work

initial (u, v)) and attempts to compute the sub-pixel optical flow. This is done by moving the window
successively in the 8 surrounding directions and finding the location which minimises the SSD. The motion
segmentation technique that follows is discussed in Section 2.2.

2.2 Motion Segmentation

Motion segmentation techniques combine the segmentation and optical flow paradigms to solve both
problems in a unified way. In literature, there are two main categories of motion segmentation schemes.
One common scheme is to create segmentations independently across frames. These segments would show
some similarity in motion and image features. The second scheme is more semantically meaningful, where
segments in a frame are corresponded with segments in other frames. This technique aims to produce
whole temporally consistent segments. In this section we will discuss a small section of the large volume
of literature available on this topic.

Black and Jepson [6] proposed one of the earliest methods to constrain motion to regions using the
brightness information. The solution given can be divided into two stages: early processing and medium-
level processing. In this two-stage process, it attempts to estimate optical flow through motion of planar
regions and local deformations. These deformations are allowed in the model since the assumption of
planarity is likely to be violated in any natural scene. The segmentation, coupled with this method, is
done on brightness values to constrain motion to planar regions, as initially proposed in Black [4]. It uses
an analog spatial outlier process to define discontinuity between pixels - also defined is a penalty term
which needs to be paid with increasing discontinuity. All these steps are performed to eventually minimise
an objective function with a data term and spatial coherence term. The first stage of the method estimates
a coarse fit to the parametric model and evaluates a set of parameters for each region. It consists of two
low-level processes: a process that smooths image brightness while checking for discontinuities; and one
that estimates motion. The second medium-level processing stage refines the initial fit of the parameters
with “standard area-based regression approaches”. The main aim of this stage is to collate the low-level
information from the first stage by connecting piecewise smooth brightness regions and estimating their
motion. This is done in three steps: (1) fit a translational/affine/planar model which best captures motion
in a region, (2) using this model, warp the regions into alignment, so a Gradient-based optical flow method
can help in refining the initial parametric model, (3) allow deformation of low-level patches to improve
the motion estimate of each planar patch.

As introduced in Section 2.1, Chang et al. [15] takes a slightly different approach to motion segmen-
tation - by finding a parametric field, that optimises the motion field and segmentation. This is done
using a least squares solution. After refining the estimates for the flow field, the segmentation field is also
improved to give the minimum-norm residual field using Gibbsian priors. The least squares estimates of
the mapping parameters Φ for each segment is computed in closed-form given the MAP estimate:

(û, v̂, Ŝ) = max
u,v,S

P (It|u, v, s, It−1)P (u, v|s, It−1)P (s|It−1)

where (u, v) are motion field vectors, It (current frame), It−1 (search frame) are the two frames, and
s is the segmentation field. The conditional PDF P (It|u, v, s, It−1) quantifies how well the motion and
segmentation estimates fit the given frames. This PDF is modelled by a Gibbs distribution. P (u, v|s, It−1)
is also modelled by a Gibbs distribution with a potential function which aims to minimise the deviation of
the motion field (u, v) from the parametric motion (up, vp). The third term P (s|It−1), the priori probability
of the segmentation, also follows a Gibbs distribution to discourage formation of small, isolated regions.
The method also proposes dense representation of the residual field for improved motion segmentation.

8

Chapter 2: Related Work Ahmad Humayun

The graph based approach due to Shi and Malik [46] aims at finding motion segments which minimise
the normalised cut Shi and Malik [47]. Once the graph is constructed (as discussed in Section 2.1),
normalised cuts across the graph will give spatiotemporal volumes corresponding to different moving
objects. This technique segments the scene since normalised cuts not only reflect similarity within a
partition but also dissimilarity across partitions. Combining the weights w(i, j) in a matrix W, and a
diagonal matrix W where D(i, i) =

∑
j w(i, j), the method solves the generalised eigen-system (D −

W)y = λDy for the smallest eigenvalues. The graph is then partitioned by Ncuts with the eigenvector
belonging to the second smallest eigenvalue. The segment is only used if it is stable (by checking the cut
cost). As a result, time slices of the output segments indicate corresponding groups across time.

Since [46] groups pixels based on the affinity of the motion profile, a local measurement, it ignores global
constraints and appears unstable in noisy sequences. An approach based on Geodesic Active Region due
to Paragios and Deriche [39] tackles this problem by incorporating a Visual Consistency Module which
tries to optimise the segmentation map globally (while keeping track of motion). The main theme of
the paper is simultaneous tracking of multiple non-rigid objects. A more generalised formulation of this
approach can be found in Paragios and Deriche [40]. The method, at its heart, has a curve-based objective
function formed with boundary and region-based terms. This final objective function is minimised using
gradient descent methods. The boundary terms aim to find a minimal length contour attracted to region
boundaries. On the other hand, region-based terms aim to maximise the quality of the segmentation map.
Intuitively, the initially proposed curves are propagated toward the best partition under the influence of
boundary, intensity and motion-based forces. The method assumes object motion can be described using
global affine model A(x, y).

This technique also incorporates a motion detection module which uses the difference frame to create
parametric (Gaussian or Laplacian) distributions which can be used to model static and mobile pixels. The
parameter in these distributions are estimated using the Maximum likelihood principle. Also particular to
this method is the intensity segmentation module - which moves the curve in the direction which creates
interior regions with desirable intensity properties.

Another method which considers an affine motion model was proposed in Wong and Spetsakis [61].
Its initial estimation of the flow field was discussed in Section 2.1, which resulted in sub-pixel estimates of
(u, v). This helps align the image segments It−1 and It. Since the computation of the affine flow can be
costly, the technique uses the initial translational estimates to identify areas where to compute an affine
model. This model is then built using a differential approach which computes the standard least squares
for the following equation:

SSDaffine =
∑

all x,y

(t−1)Itrack ·
[
It−1(x, y)− It(x, y) + It−1,x(x, y)

u0

ux
uy

+ It−1,y(x, y)

v0

vx
vy

]2

where

[
ux uy u0

vx vy v0

]
are the affine parameters, It−1,x and It−1,y are the image derivatives in the x and

y direction, and (t−1)Itrack represents the region on which the affine optical flow is being computed. The
affine parameters are computed by minimising SSDaffine for all pixels in the region. By aligning all the
previous images to the last image using these affine parameters, it segments out the object to-be-tracked
by thresholding the pixel-wise SSD. This is a reasonable measure since the SSD of the aligned tracked
object would be small. This process is made computationally tractable by aligning just the first and
second moments of images (see [61] for details). To segment out the moving object, the threshold is set
keeping in mind the camera and motion noise.

As discussed in 2.1, Galun et al. [19] also iteratively improves its motion models in an effort to

9

Ahmad Humayun Chapter 2: Related Work

segment motion. The approach involves iterating over two steps: clustering and re-estimation; where
each iteration is stated as a level. Apart from computing the optical flow for each seed pixels in the
clustering step, it also computes how strongly each pixel is associated to a particular seed. The aim of
the re-estimation step is to estimate the common motion of each cluster. This coarsening step begins
by selecting a subset of the elements from the previous level as seeds, with the constraint that all other
elements are strongly associated with (subsets of) these seeds. To aggregate pixels, the motion profile is
computed by multiplying all the child motion profiles (see [19] for details) - this technique gives sharply
peaked motion profiles in textured regions in just 1-2 coarsening steps (note, this scheme doesn’t work
in uniform regions). These peaked motion profiles help accumulate moments of respective seeds. With
increasing levels, the aggregates/segments become large and translational motion stops reflecting the true
motion. If there are enough constraints available in the peaked motion profiles, an affine transformation for
the segment can be computed. The paper also describes computing a projective transformation with the
fundamental matrix at higher levels. Finally, these motion parameters are combined with intensity cues
by using Segmentation by Weighted Aggregation (SWA) (Sharon et al. [45]) to give the output segments.

Stauffer and Grimson [49] also aims to learn patterns of activity in a scene. Their approach is unique
amongst the works mentioned here, as it proposes a system which fuses motion information from multiple-
cameras (each sensor has some location awareness). Motion segmentation is done using an adaptive back-
ground subtraction method where each pixel (process) is modelled as an adaptive mixture of Gaussians,
using online approximations to update this model. Each time the parameters of this model are updated,
it uses a heuristic to find whether the pixel belongs to a background process or not. Every new pixel Xt

is checked against K Gaussian distributions until a match is found (it considers a value within µ ± 2.5σ
of a distribution as a match). If none of the distributions match the current pixel, the least probable
distribution is replaced by a new distribution, with a mean of Xt and a high variance and low prior weight
wk,t. Finally, the Gaussian distributions, having more evidence (prior weight) and less variance (sort
distributions by w/σ) are taken as part of the background. Pixel values that do not match any of the
background Gaussians, are grouped together using connected components. These connected components
are tracked across time using a multiple hypothesis tracker, hence resulting in segments with their motion.

To discuss a subspace method for motion segmentation, we will turn our attention to Zelnik-Manor
et al. [65]. This paper tracks using subspace methods applied directly to features pixel intensities. It
organises the problem as a multi-body segmentation using a flow field matrix [U |V] (where both U and
V are matrices of directional motion vectors of Frames × Pixels dimensions) giving rise to multi-body
factorisation with directional uncertainty. While segmenting [U |V], the decision of grouping together two
objects is based on the ranks of the matrix - which exploits the linear dependency of flow fields of a single
object. Since the flow-field matrix [U |V] is of rank 1, there exists a set of basis trajectory vectors and a
set of basis flow-fields such that they can be factored into two matrices:

[U |V] = C︸︷︷︸
flow coefficients

B︸︷︷︸
flow basis

In addition, since tracking might not be reliable for all feature points, it introduces directional uncertainty
by a weight matrix [U |V]Q. Irani and Anandan [25] proves that this results in the covariance-weighted
measurement matrix ([G|H] = [U |V]Q). Finally, segmenting the entire video into a set of moving objects
is now a question of sorting the columns of the covariance-weighted measurement matrix. This is easily
done by finding its RREF. Since the rank of [G|H] is considered to be small, RREF is computed on the
SVD of [G|H].

The reader is referred to Megret and DeMenthon [34] for a more detailed survey (and taxonomy) of
motion segmentation techniques.

10

Chapter 2: Related Work Ahmad Humayun

2.2.1 Occlusion resolution

Occlusion is a critical concept algorithms have to deal with in motion segmentation. The literature dis-
cussed belongs to either occlusion resolution in a layered representation or boundary occlusion resolution.

Wang and Adelson [57] uses the term layers for moving objects. The method basically gives a method
for motion segmentation where each segment becomes a layer. Each layer is defined using an intensity
map and an alpha map (to denote each pixel’s transparency). Velocity maps are used to show how layers
can move in time. Each layer is also assigned a depth ordering which follows the rules of compositing.
Since optical flow models moving objects like “rubber sheets”, it argues that this motion assumption
breaks down in case of occlusion. It supposes that regions undergoing similar affine motion result from
the same plane in the world - and to deal with boundary motion discontinuities, it allows sharp breaks in
the flow field using regularisation. These discontinuities are explained by the framework as instances of
occlusion. For an initial estimate of motion, optical flow is computed in a local neighbourhood region, as
suggested by Bergen et al. [3]. Using these initial estimates of optical flow, it determines a set of affine
parameters which are likely to be observed. The scene is then segmented, by an iterative process, which
classifies regions of the motion model that provides the best description of the motion withing each region.
This technique relies on k-means clustering in affine parameter space. This method was arguably the first
to develop the idea of an affine model for flow.

Following a layered based approach using colour segmentation as an input to its stereo algorithm,
Zitnick et al. [66] employs an interesting matting technique in order to interpolate views from multiple
images. Since boundary pixels might receive contributions from foreground and background objects, it
argues that the same colour distribution for boundaries in new views might look unnatural. It approaches
this problem as an overlap of layers. In locations of depth discontinuities, matting information is computed
in the 4 neighbourhood pixels. Within this neighbourhood, foreground and background pixel colour with
alpha values are computed using Bayesian image matting. The information recovered for the foreground
is used to compute a new boundary layer. This is useful in generating novel views since the boundary
layer can be rendered with different levels of opacity.

Zitnick et al. [68, 67] also computes motion segmentation while accounting for matting in overlapping
regions (modelled with α). It proposes a matting model where each pixel can belong to two segments
(out of the K segments) with a corresponding association of α and 1− α:

ci ≈ αici,s1i + (1− αi)ci,s2i

where s1
i , s

2
i denotes the two segments, i is the pixel index, ci is the colour contribution of pixel i, and

ci,sxi is the colour contribution of pixel i from segment sxi .
Another approach using layers to explicitly solve occlusions is given in Kumar et al. [26]. Overall, the

technique is an unsupervised approach to generative layered representation for motion segmentation. It
learns each rigidly moving object in a sequence and uses it in a layer. Once the parameters of the model
have been estimated, any one of the frames in the sequence can be generated by selecting the right latent
variables: represented by transformation, appearance, layer ordering and lighting parameters. An initial
estimate of the model parameters is made using patches in an MRF framework, which segments motion
using a loopy belief propagation technique. Given these initial model estimates, one of the methods it uses
to improve the shape of the segments is α expansion. It expands each segment and checks for overlaps to
see if either layer A occludes layer B or vice versa - by checking which configuration minimises the energy
of the layered representation.

Ogale et al. [38] introduces an interesting formulation where it uses occlusions themselves for motion
segmentation. It highlights 3 categories of object motion to differentiate motion due to camera and scene

11

Ahmad Humayun Chapter 2: Related Work

elements. The ordinal depth is computed according to the categorisation of the motion. If an optical flow
estimate is provided, the method suggests a simple scheme to assign occluded regions to the right layer.
3 frames F1, F2, F3 are given, with their optical flows u12 and u23, and their reverse optical flow u21 and
u32. From previous computations, the method knows regions of occlusion O12 (regions present in F1 but
not in F2), and O23. We first consider finding the region labels of occluded regions in F3, O23. Given that
the regions occluded in F3 would have been visible in F1, F2; the method can segment the flow of u21 to
find the labels for regions that subsequently got hidden in F3 i.e. O23. This helps in finding ordinal depth
of the occluded regions.

Xiao and Shah [62] assumes planar regions and extracts a set of affine or projective transformations
that these regions undergo. In order to do this, it detects the occlusion pixels and segments the scene
into motion layers. Using a level set formulation and graph cuts it creates an initial set of segments. In a
two step process, it merges similar segments into layers on the basis of motion similarity. In the first step,
two regions R1, R2 from the initial layers are merged if the SSD of the two regions, after applying the
transformation H2 on R1, results in a majority of the pixels in R1 supporting R2. The motion parameters
are recomputed after the merger. In the second step, the bi partitioning graph cuts algorithm is used to
prune the un-supporting pixels from this new merged R1|R2 region. This results in layers, said to have
coherent motion. Finally, it finds occlusion between overlapping layers using the graph cuts algorithm.
This is done while ensuring consistency of layer segmentation using occlusion order constraints.

Stein and Hebert [50] also models motion discontinuities as occlusion events. After segmentation
(using watershed on non-local maxima suppressed Pb [32] edge map) and motion estimation, it attempts
to identify occlusion boundaries (which would belong to multiple surfaces). To detect such a moving
motion edge, it considers the movement of the edges in a spatio-temporal volume (see Figure 2.1a). Since
the tangent of the angle of this path (temporally) would correspond to the orientation and speed of
edge’s motion, it applies an oriented edge detector to the temporal slice of this volume. Here the choice
of the filter is important. It uses a cylindrical detector capable of dividing data into two halves aimed
at detecting significantly different distributions of motion (see Martin et al. [32]). Using this filter, it
combines local normal speed estimates along the edge to get full 2D (u, v) motion estimate of the whole
edge fragment (see Figure 2.1b). It uses a linear system of equations based on fragment’s overall motion
vector projected onto the local normal vectors:[

u
v

]
= arg min

∑
i∈F

w(i)(nx,iu+ ny,iv − si)2

where nx,i and ny,i are the components of the normal at point i on the edge fragment F and si is the
corresponding speed from the spatio-temporal detector. wi denotes the contribution according to the local
edge strength. These detected edge segments are critical to this technique, as they are associated with a
set of motion-based and appearance-based cues. These cues are critical in computing the likelihood that
an edge fragment is an occluding contour (see Figures 2.1c and 2.1d).

2.3 Learning (Feature selection)

This section discusses a few works in feature selection as a classification task. The first two papers are
generic machine learning papers, while the papers in the later half are related to feature selection in the
domain of image segmentation, tracking and optical flow.

Muja and Lowe [35] concentrates on a common problem in many computer vision algorithms: nearest
neighbour matching in a high-dimensional space. More formally, given a set of points P = {p1, · · · , pn}

12

Chapter 2: Related Work Ahmad Humayun

(a) A moving edge sweeps out
an oriented path θt in a tem-
poral slice

(b) A representation of the spatio-temporal edge detector used (left), shown at each
point along a boundary fragment (mid), each detector will yield a combined normal
(black) vector (right)

(c) Detection of occlusion boundary
shown in red. Output gener-
ated with appearance (left) and mo-
tion+appearance (right) cues. The
gray value of the edges denote the
strenght of the edge

(d) Same as 2.1c shown on a different
input

Figure 2.1: Shows the steps involved in resolved occlusion boundaries in Stein and Hebert [50]. Taken
from Stein and Hebert [50]

in a vector space X, and a query point q ∈ X, it tries to find the approximate nearest neighbour for q
in P . To tackle this, the paper introduces a new method of approximate search which is a modification
of the hierarchical k-means tree. But, in this section we are more interested with the algorithm selection
technique it proposes. Given a dataset, this technique uses a cross-validation scheme, to select the ideal
algorithm and its parameters. The paper demonstrates using this technique to select either randomized
kd-tree or hierarchical k-means tree and suggests a set of parameters e.g. the number of iterations to use
in case of the latter. The choice of algorithm is made by evaluating a cost of each algorithm, computed
on a small subset of the input data:

cost =
s+ wbb

(s+ wbb)opt
+ wmmt/md

where s represents the search time, b represents the tree build-time, and mt is the memory used for the
tree, and md is the memory to store data. wb is the weightage provided by the user for build-time i.e.
when wb = 0, the user isn’t concerned with the build time. Similarly, wm gives the importance of memory
overhead against time-overhead. The time overhead is computed relative to (s + wbb)opt, which is the
optimal search and build time if memory usage is not a consideration. Since the cost is built only to
deal with nearest neighbour searches, adapting it to another method would require changing the cost
altogether.

13

Ahmad Humayun Chapter 2: Related Work

As a more general scheme, Raykar et al. [41] describes the problem of selecting the right label for
a classification task given a number of algorithms (where the labels from algorithms might vary by a
substantial amount) and no gold standard is given (for the classification problem). In order to find the
true label, it presents a MAP estimator, which also learns the classifier, and the algorithm accuracies in
parallel. The performance of each algorithm is judged on sensitivity and specificity with respect to the
gold standard. Using these performance rating, each algorithm is ranked and assigned weightage that
will be useful in all subsequent classification tasks. The EM algorithm is used to iteratively establish the
final gold standard, using the performance measures from all the algorithms. The paper also mentions
the possibility of using a beta prior (on sensitivity and specificity), in-case some prior knowledge about
a particular algorithm needs to be asserted. This formulation is an improvement over a majority vote
technique, which fails when some algorithms are more trustworthy than others.

An approach closer to our application is given in Yong et al. [64], which proposes to find the ideal
segmentation algorithm for a particular image. The system can be categorised as a “performance predic-
tion based algorithm selection model”. This performance prediction is based on both image features, and
prior knowledge and experience. Two assumptions are made to make this technique work: (1) the algo-
rithm ideal for segmentation depends on image characteristics such as contrast, noise, and illumination;
(2) the performance of an algorithm on images with similar characteristics is approximately the same.
The method constitutes of three modules: (1) performance predictor which defines a prediction function
based on segmentation quality of different algorithms, at the training stage; (2) performance evaluator
is used in the training stage to rank the algorithms - which is a supervised offline scheme; (3) feature
extractor which uses a simple intensity histogram. The ranks and the features extracted are eventually
used to train the performance predictor. At runtime, the performance predictor ranks the segmentation
algorithms according to the input image’s (extracted) features. The paper demonstrates selecting the best
algorithm in 85% of the test cases.

Moving from domain of segmentation, Stenger et al. [51] defines a similarly structured technique for
tracking. Since tracking is an iterative process, it needs to learn the model of the to-be-tracked object, in
hope of detecting it in subsequent frames. Here, an issue that can plague a learning technique in tracking,
and any other iterative classification approach (unlike segmentation), is that of adaptability against drift.
The tracker can learn (adapt) the object model quickly but it will be more susceptible to drifting off
(by erroneously learning the background model). To avoid this scenario, [51] suggests using a trained
offline detection component. Each tracker is also evaluated during this training stage. Every tracker Ok

outputs the estimate of the tracked position xkt on a training set, its error ekt from the ground-truth,
and a confidence value ckt . Selecting a particular threshold on error, the loss of track can be identified
automatically. Using these measures, precision (1− expected error) and robustness (the probability of
keeping track) for each tracker is noted. The method proposes two schemes for online tracking. The first
one is a parallel scheme, where multiple trackers are used simultaneously. The tracker with the lowest
expected error given the confidence value (mink E[ek|ck]) is used for the output. The second is a cascaded
scheme, where trackers are used sequentially until a tracker is found whose expected error is below a
threshold (E[ek|ck] > τ → evaluate next tracker). The advantage of using a sequential approach is the
reduced computational time.

Mac Aodha et al. [29] suggests a novel approach to evaluating optical flow by choosing ideal algorithms
per-pixel. It supposes that some form of gold standard is available during the training phase but not
during runtime. Like Yong et al. [64], it also tries to find a relation between good performance of an
algorithm against specific spatial and temporal features. Experimental results given, use Random forests
(see Breiman [9]) to classify which flow algorithm (4 algorithms considered - k = 4) to use at a particular
pixel. A total of 44 features were input to the classifier which included measure of textured-ness, distance

14

Chapter 2: Related Work Ahmad Humayun

from edges, derivative of proposed flow field (to be wary of motion discontinuities), all at different image
pyramid levels. The best features were selected by the classifier and used in the algorithm selection
process.

As an added note, if we consider interest point detectors, like Shi and Tomasi [48], as binary classifiers
on image features, they already provide a rudimentary base for algorithm selection. Although an advantage
of these schemes is that no energy functional needs to be employed over the complete data to get optimal
results.

15

Chapter 3

The Occlusion Classification
Algorithm

This chapter describes a method for finding regions of occlusion in a two frame sequence. We take the
machine learning approach to solve this problem, where each pixel is considered as an entity and is trained
and tested with a classifier using features associated to it. More formally we have features x for each
pixel, and we seek the output label Y ∈ Y, where Y is Categorical indicating if the data-point is occluded
or not (binary/Bernoulli to be precise). Since we use random forests for classification, the output is a
posterior probability for x taking the positive label (occlusion). In short, our method takes an input
sequence; computes features on it; classifies each pixel; and outputs an occlusion probability map. We
can later threshold this probability map to obtain a binary labeling.

As explained in the rest of this chapter, the reason for adopting a learning approach is because
the relationship between our features x is non-linear, and developing a heuristic would be hard if not
impossible. Although one drawback of using a learning technique like random forests is the lack of
any spatial regularization during training or testing. This is rectified by using features which establish
relationships over pixel neighborhoods.

The chapter is divided into two main sections. Section 3.1 describes the learning method we use. After
discussing the building blocks of forests, Classification Trees (Section 3.1.1), we describe Random Forests
in detail (Section 3.1.2). Here, we also include a discussion on alternate learning approaches (Section
3.1.4). After deciding on a learning method, Section 3.2 describes the features/variables that will be
input to the forest for training and testing occlusion regions. This section describes features based on
image properties (Section 3.2.1) and features based on flow (Section 3.2.2). All algorithms used herein
are implementations by the author of this thesis, unless stated otherwise.

3.1 Learning

There are two broad approaches to any classification task. The first is to manually develop an algorithm
which works on heuristics. The second approach is based on learning - which, in short, employs some
technique to automatically find the relationship between your features x = {f1, f2, . . . , fM} and the output
label. Given that the interaction between the features and the output can be complex, the latter approach
outshines many heuristic solutions. In this section we will discuss the learning side of our algorithm, and

16

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

later we will explore our feature vector x in Section 3.2.

Our chosen learning approach is the randomized decision forests, or more simply, random forests. We
have selected it since it is a fast classifier promising low error rates comparable to boosting, and has found
wide use in both data mining and machine learning [9]. Before we discuss random forests (Section 3.1.2),
we will first explain its building blocks - “classification trees”.

3.1.1 Classification Trees

Like any other classification or regression task, the goal of a Decision Tree is to predict an output variable
Y , given a set of input variables x. When Y, the domain of Y , is a continuous or discrete variable taking
real values, decision trees take the form of Regression Trees; on the other hand, when Y is a finite set of
unordered values, we need to use Classification Trees. The terms decision trees and classification trees are
sometimes used interchangeably. In this section we will be more concerned with classification trees as our Y
contains only 2 unordered values: 1 for occlusion, 0 otherwise. In mathematical terms, a classification tree
is concerned with finding a function g(x, T) which maps each value in X , the domain of x, to a value in Y.
The construction of g(x, T) (building the tree) requires a training set T = {(x1, Y1), . . . , (xN , YN)}. In the
domain of machine learning, this technique is categorized as supervised learning or “learning by example”.
There are many criteria for choosing an g(x, T) - expected misclassification cost E{g(x, T) 6∈ E(Y |x)}
being a popular choice, where E(Y |x) is the expected value of Y at x [28].

In their essence, classification trees are quite simple. Starting with the complete input data D from
the root node, each internal/decision node in the tree has a question based on one of the variables xi.
This heuristic could be of the form xi ≥ Ti in case xi is real valued, or xi ∈ Vi if xi is categorical. The
data is split according to the answer of each data point Dk to this question. Once the data is split, each
of the respective splits is subjected to the questioning on the next internal node. Following this “recursive
partitioning”, all the data is split down the tree until each Dk point can be definitively classified. The
nodes where the method decides to stop splitting, are the leaf node. Since the framework revolves around
splitting over chosen thresholds, it has no need for normalizing variables.

Instead of a tree, there is another way to view this form of classification. Given the input space X , this
recursive partitioning can be viewed as splitting of the input space into smaller sets. Mathematically, if Y
contains J distinct values Yj , the classification output can be viewed as a partitioning of X into J disjoint
pieces Aj = {x : g(x, T) = Yj} such that X = ∪Jj=1Aj . Figure 3.1 shows the comparison of clustering
from classification trees against some popular unsupervised methods. Figure 3.1d clearly shows that each
partition Aj itself is constructed from a union of smaller disjoint sets. This is equivalent to combining
data on leaf nodes which have the same classification Yj .

Given the recursive splitting of the classification tree, three questions come to mind: (1) how to choose
the heuristic for partitioning (how to build the tree), (2) when to stop the recursive partitioning, (3) how
to predict the value of Y for each x in a partition. For the first task, many methods employ univariate
binary splits, e.g. xi ≥ Ti and xi < Ti. We can also have n-ary splits, but we are not concerned about
them since such splits can be represented by multiple binary splits. In building a tree, the interesting
question is the choice of the variable xi and the splitting threshold Ti to use at a decision node. In short,
methods try to make a choice which leads to information gain. This usually involves an exhaustive search
making it one of the expensive operations while constructing a tree. We will discuss three methods below
for this tree building operation.

There are many methods for performing the second task; one being to recursively partition until
partitioning is not possible, i.e. until each node only has data belonging to one class Yj . After the popular
CART method [11] generates this “maximal tree”, it examines smaller trees, obtained by pruning away

17

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

(a) k -means (b) MoG (c) LDA (d) Classification Trees

Figure 3.1: Comparison of 4 clustering methods. Although the first 3 methods are unsupervised and can
only be used for classification (not regression), it is still interesting to view their clustering techniques
in comparison to Classification Trees. k -means (shown in 3.1a) clusters data according to the nearest
mean, while Mixture of Gaussians (shown in 3.1b) fits multi-variate gaussians to encompass the data. In
contrast, Linear Discriminant Analysis finds a linear transformation which best separates the data (the
axis is shown in 3.1c). Classification Trees (3.1d), with the help of training samples, partitions the input
space, concentrating more on areas which are harder discriminate.

branches of the maximal tree (see Bradski and Kaehler [7] for an example on pruning). Figure 3.2 shows
why pruning is important for tree’s generalization capacity, since without it, the tree learns the training
data perfectly (completely over-fits). Other methods for finding the stopping condition include recursive
partitioning until the number of data points in a node reaches a set minimum.

The third task of predicting the output variable Y at a leaf node is quite simple. In classification the
output variable Y is the class that minimizes the estimated misclassification cost.

To discuss any decision node selection techniques, we first need to define some terms: let Nj(t) be
the number of data points which belong to class Yj at node t; and let N(t) be the total number of data
points at node t. Now we can define the estimated probability that a data observation at node t belongs
to class Yj as p(j|t) = Nj(t)/N(t). Moreover, let D(t) be all the data observations those end up at node
t. The complexity of all the techniques below depends on the total possible splitting points Ti. If xi has
v distinct values, the possibilities for Ti are v − 1. In-case, xi is a categorical variable, the number of
possible splits is 2v−1 − 1.

There are many heuristics to find the best split: C4.5, C5.0, gain ratio, Gini, to name a few. We will
discuss 3 below:

Entropy

Since we are aiming for maximum information gain, entropy is a natural criterion for selecting the variable
xi and the splitting point Ti in order to partition the data. The measure of entropy “impurity” is:

i(t) = −
J∑
j=1

p(j|t) log2 p(j|t)

18

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

Figure 3.2: The graph shows a typical case of training and testing errors with the increase in the number
of training cycles (number of nodes in case of a Classification Tree). The practitioner of any supervised
learning method aims to find the point of best generalization. Beyond this point, more training data
results in overfitting.

To use this impurity factor for splitting the data, we will need to examine each variable xi in turn. If Ti
partitions the data to D(r) and D(l), we can compute the decrease in entropy as follows:

I(t) = i(t)− N(r)

N(t)
i(r)− N(l)

N(t)
i(l)

where N(r) and N(l) is the number of observations distributed to each of the respective child nodes after
the split (N(r) + N(l) = N(t)). We can find the ideal variable and split value by finding the maximum
I(t) across all variables and all splits.

Gini index

Gini “impurity” work similarly as Entropy 1. The only difference being the “impurity formula:

i(t) = 1−
J∑
j=1

p2(j|t)

Now I(t) is computed as before. This impurity function is specifically important for our work since the
CART method [11] by default employs Gini impurity, and Random Forests builds trees using CART. To
illustrate the Gini impurity, Figure 3.3 builds a classification tree using this technique. In all the data
tables, the sub-scripted dark-blue values are I(t) computed using the Gini index. Data is partitioned
using the variable and the split value which gives the maximum I(t) (given in white).

One important aspect to note about both the Gini and Entropy measures is that they are biased
towards variables with more missing data. During split selecting, if a variable xi has missing values, only
the observations non-missing in both xi and Y are used in computing the decrease in impurity. This
makes it easier to “purify” a node by splitting using a variable with more missing values [28].

1A simple MATLAB code for a Classification Tree using Gini “impurity” is given in Appendix .1

19

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

Figure 3.3: Shows the process of building a Classification Tree using the Gini criterion. The decision
nodes in the tree are given as gray boxes, and the leaf nodes as green triangles. The rounded rectangles
show the outcome label Y at each leaf node. Each table pointing to a decision node gives the data in
question at that node. The left-most table, pointing to the root node, shows the complete set of 8 training
observations. Apart from the values xi, the information gain I(t) using Gini “impurity” is also given as
sub-scripted dark blue values. These values are computed by splitting data xi < Ti and xi ≥ Ti. The I(t)
selected for splitting the data is given in white (blue rows for < Ti and red rows for ≥ Ti).

C4.5

C4.5 is one of the techniques which fits well for classification tasks. Suppose the node t is split into
sub-nodes t1, t2, . . . , tk. Given the entropy “impurity” i(t), we define the gain of a split as before: I(t) =

i(t)−∑q
N(tq)
N(t) i(tq). C4.5 selects the split which yields the highest gain ratio:

N(t)I(t)∑
iN(ti)(logN(ti)− logN(t))

The C4.5 method grows a large tree, and then prunes it back using a conservative estimate of the error
at each node.

Classification trees have found wide-spread use for inferring complex AND/OR relationships amongst
features, and their ability to work with different data-types (categorical, real-valued) in a unified frame-
work. Their power to handle missing data through surrogate splits, and finding variable importance of
the data features by order of splitting have made classification trees a popular choice in both machine
learning and data mining community.

3.1.2 Random Forests

Random Forest [9] performs classification (or regression) by growing many random decision trees. These
random trees are grown using the CART method [11] with the Gini impurity (explained in Section 3.1.1).

20

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

Once the forest is built, classification is done by trickling down data from each random tree. Eventually
each tree votes for the class it thinks is best fit for the data provided, and the votes from all the trees are
combined to give the final classification. The method ensures that each classification tree in the forest
has a different structure and split tests, since correlation between any two trees would increase error rate.
The collective consensus of these randomly perturbed trees is what makes Random Forests a powerful
classification technique.

The term “randomized” refers to the training algorithm of random forests in two ways. Firstly, each
tree is trained on a random subset of the data. Secondly, when building the tree, several candidate split
tests are chosen at random from the pool of potential features/variables, and the test that optimally splits
the data (under an optimization criterion, as discussed in Section 3.1.1) is chosen. These two forms of
randomization help generalization by ensuring that no two trees in the forest can overfit the whole training
set.

As we discussed in Section 3.1.1, pruning plays an important role in a classification tree’s generalization
ability. The complexity of the tree model has to be just right (see Figure 3.2): too little or too much
training results in poor generalization. Interestingly, Random Forests have no need for pruning. All trees
are built exhaustively, while dealing with its detrimental effects through random features and bagging.

Random Features

Unlike classification trees, each node in the tree makes its decision based on a random subset of the M
features. On each node m�M random features are offered to compute the node impurity (see Figure 3.4.
Breiman [9] mentions that using random features not only reduces computation time, but also minimizes
the correlation between trees while maintaining their strength. Choosing the right m is critical to the
performance of the forest. Reducing m increases both the strength and correlation of trees. Finding the
optimum m is question of analyzing the OOB (out-of-bag) error rate.

Bagging

Another difference in building random forests from typical classification trees is the selection of training
data. Given the training data T of N training points, each tree samples Ni ≤ N data points with
replacement (bagging), which we will denote as Tk. When Ni = N , Tk is known as a bootstrap sample.
Unlike classification trees which are concerned with the construction of g(x, T), trees in a random forest
use bootstrap samples to create a sequence of predictors {g(x, Tk), k = 1, . . . , L}, where L is the number
of trees in the forest. If each tree g(x, Tk) predicts a class Yj ∈ {1, . . . , J}, Cj will be the number of
trees that vote for class Yj . Now the final prediction of the random forest would be the class with the
maximum votes arg maxj Cj . This makes random forest a bagging predictor [8]. Once we have the final
vote, we can also derive the posterior probability of the winning class as the ratio of votes Cj/L. Since we
are dealing with a binary predictor (J = 2), the posterior probability for each pixel would indicate how
likely it is an occluded pixel.

There are several reasons for working with a bagging predictor rather than using the training data
directly. This technique of selecting input data helps in increasing both the stability of trees and classifi-
cation accuracy while avoiding overfitting. The other advantage of bagging is that it allows to compute a
running estimate of the generalization error, as well as estimates for the strength and correlation. These
estimates are done OOB (out-of-bag) which is explained next.

21

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

Figure 3.4: Example of a Random Forest training phase. The table on the left shows 6 training data
points each with 7 variables/features. 3 trees from the forest are shown. Each tree has its own bootstrap
sample Tk which is used for building the tree. The remaining training samples T̂k, given in the bottom
row, are used as the out-of-bag data. Also, each node computes node impurity on only m = 3 random
features.

Out-of-Bag Error Rate

In a random forest there is no need for separate test data to get an unbiased estimate of the test error.
When each tree takes a bootstrap sample, (for large datasets) around 1/3 of the data is not sampled
by chance. This remaining 1/3 population is the Out-of-Bag data. Mathematically, since we created L
classifiers of the form g(x, Tk), each classifier would have some training set T̂k which it has never seen:

T̂k = {(xi, Yi) : ∀(xi, Yi) ∈ T , (xi, Yi) 6∈ Tk}

Hence, for any (xi, Yi) there will be around L/3 trees which have not trained on this sample. The set of
L/3 trees for each (xi, Yi) is known as the out-of-bag classifier. We can use this out-of-bag classifier to
get an estimate for the generalization error on the training set i.e. each g(x, Tk) can be tested using the
training set T̂k to get an error estimate. This estimate is known as the Out-of-Bag Error Rate

Strength and correlation can also be estimated using the out-of-bag classifier. These measures help in
finding the classification accuracy and if improvements can be made. See [9] for details. The out-of-bag
estimate is also used to get the relative importance of variables.

Variable Importance

The idea behind finding variable importance is to randomly perturb the variables in the out-of-bag data
and find the change in classification accuracy. Given there are M input variables, their relative importance
needs to be computed in turn. In each iteration we take T̂k; randomly permute the locations of only one
variable m; and test this new perturbed T̈k,m down the respective tree. The prediction given by the

random forest with T̈k,m can be compared with the true class label to give the misclassification rate.
Given the increase in the misclassification rate over all the trees, the relative importance of each variable
m can be computed.

22

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

Proximities

Proximity is a measure of how similar two data points are. In decision trees, seeing if two samples end up
at the same leaf node is a convenient way of judging proximity. To get a value for proximity in random
forests, two data points are tested on all trees while noting how often they end up at the same leaf node.
Normalizing this by L, the number of trees in the forest, gives a measure of similarity of the two samples.
This measure is used for finding outliers (data point not similar to any other) and groups of points that
can be clustered.

Replacing Missing Data

In training sometimes some values can be missing in the data. For instance variable m of a data point
belonging to class Yj is amiss, it can be replaced by the median value of variable m from all data records
labeled as class Yj . In case the variable is categorical, this replacement is done by selecting the mode
value. In random forests, this method can be enhanced by using proximity. After having filled missing
data with initial estimates, an iteration of random forests is run. The missing value is updated using
values of variable m, having the same class label, weighted by proximity. Good estimates can be derived
for the missing values with a few iterations of random forests [10].

3.1.3 Implementation

We have used the C/C++ implementation of random forests packaged with OpenCV 2.1. The middle-
ware layer to interact with random forests API was written in C++. This code has been adapted from
Mac Aodha et al. [29] 2. The binary executable of the middle-ware layer is directly called from MATLAB

using the system() command.

3.1.4 Learning Framework Alternatives

When the data has lots of features which interact in complicated, nonlinear ways, assembling a single
global model can be very difficult, and hopelessly confusing when you do succeed. Random forests aside,
there are many approaches to perform such nonlinear classification. Most of them partition the space into
smaller regions, where the interactions are more manageable. Below we will discuss two alternatives to
random forests for our problem.

Support Vector Machines

Support Vector Machines (SVM) is a supervised learning method for binary classification [17]. Since we
are dealing with a two-way classification problem, this technique is one of the popular alternatives (SVMs
have also been extended to n-ary classification). SVMs are known to be better performers than random
forests when training samples are limited [7]. To deal with the non-linear relationship between the input
variables, SVMs map the training/testing data to a high dimensional feature space using some non-linear
mapping chosen a priori. The aim is to find an optimal hyperplane which not only separates the classes in
training, but also generalizes well. To achieve this, the optimal hyperplane is defined as the linear decision
function with the maximal margin between the data samples of the two classes; which conveniently only
requires a small amount of training to find.

2The C++ code for interacting with OpenCV random forests is given in Appendix .1

23

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

AdaBoost

AdaBoost, in essence, is a binary predictor belonging to the family of boosting algorithms those try to
build a strong classifier out of many weak ones [18]. Quite often the weak classifiers are built using
decision trees - usually curtailed to a few levels. AdaBoost is an iterative approach, where the weight
of each classifier and the distribution over the input data is iteratively adjusted. The distribution over
the data-set indicates which samples need more attention from the classifiers - hence, whenever a sample
is incorrectly classified, its cost is increased. This distribution is initialized by the cost of misclassifying
each individual data point. On the other hand, the weight of each classifier decides what would be
its contribution to the final decision. This weight typically depends on how well the classifier does on
high ranking data samples. The key motivation behind AdaBoost is that it evolves the concentration of
multiple weak classifiers in an attempt to improve results on hard cases instead of cases which are easily
classified.

3.2 Feature Set

Given a set of features x = {f1, f2, . . . , fM}, accompanied with a training (labeled) set, we now know
how to train and test a random forest classifier. The aim of this section is to construct a set of features
{f1, f2, . . . , fM} which are correlated with occlusion regions. Once we have our set of features, in Chapter
4 we evaluate using them the discussed classification framework.

In this section, we describe two types of features: (1) features based on image properties (Section
3.2.1); (2) features using flow computed between the images of the sequence (Section 3.2.2). In both
sections we explain the merits and drawbacks of using the respective feature to identify occlusions. To
view accuracy of each feature see Chapter 4.

Throughout the thesis we will be concerned with two frame sequences - we refer to them as I1 and
I2. We also compute some features using an image pyramid. Here, we use the notation I1,z to denote an
image at pyramid level z.

3.2.1 Features on Image Properties

Edge Distance

All occlusion regions have to lie adjacent to surface boundaries/edges. This motivates us to include a
feature based on edges, where higher distances from a true edge makes occlusion of pixels less likely. It is
worth noting that using edges directly as a feature will not work since all edge detectors only mark pixels
on a boundary - ideally all other pixels, even the ones close-by, are marked as 0. Mac Aodha et al. [29]
suggests using edge distance on I1 - the distance transform of an edge-detector’s output:

fED(x, y, z) = distTrans(‖∇I1,z‖ > T)

where T relates to the thresholding method the edge-detector uses, and the z indicates the level in the
image pyramid (I1,z is I1 at pyramid level z). We use canny-edge detector throughout this thesis (see
Figure 3.8c), where hysteresis thresholds are chosen automatically. In comparison, we also experimented
with Pb. edge classifier, which we discuss in Section 3.2.3.

The MATLAB class EdgeDistFeature, used to compute this feature, is given in Appendix .1.

24

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

(a) Photo Constancy on 4.1c (b) Photo Constancy on 4.1i

Figure 3.5: The two images show Photo Constancy output overlayed on the respective images. Regions
marked in green are true positives; regions in red are false negatives; and regions in blue are false positives.
Notice the false positives both in regions of significant texture (crate and pillar in 3.5a; brick ground in
3.5b) and no texture (wall in 3.5a).

Photo Constancy

Considering that flow at an occluded pixel should be invalid, a good indicator for detecting occlusion
regions could be the photoconsistency residual - the absolute difference in pixel intensities of I1,z against
the advected location in I2,z:

fPC(x, y, z, A) = |I1,z(x, y)− bicubic (I2,z(x+ u(x, y,A), y + v(x, y,A))) |

where u(x, y,A) and v(x, y,A) are flow vectors at a given pixel from the candidate flow algorithm A.
z is the pyramid level. Photo Constancy is one of the high importance indicators (as given by random
forest) in our feature set. Even though it is quite powerful in distinguishing occlusion regions, it has some
drawbacks. It is prone to false positives in regions of significant texture because even small errors in flow
can incur large changes in pixel intensities. Photo Constancy is also inclined to make errors wherever
flow breaks down even in low texture areas. This is true when regions are under an illumination gradient,
and the sequence undergoes a drastic change in the FOV (see Figure 3.5 for examples). Nonetheless, like
all features based on flow, Photo Constancy is ideal for finding occlusions due to change of FOV (regions
that go out of frame).

The MATLAB class PhotoConstancyFeature, used to compute this feature, is given in Appendix .1.

Sparse set of Texture Features

To compute image portion similarities, it is important to have a feature which takes texture into account.
Texture, here, can be defined as the repetition of basic image elements, the so-called Textons. Note that
we are seeking a texture feature which might not be suited for texture regeneration, but performs well in
texture discrimination.

Assuming that texture can be represented as a linear combination of some basis functions, one can
measure how much each basis function contributes to the image. Gabor filter bank is one such form of basis
functions, and Gabor energy derived on-top of it is widely used for texture analysis [22]. Although this

25

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

(a) (b)

Figure 3.6: Each panel shows results of texture dissimilarity on two adjacent textures shifted by 30 pixels,
using fnST based on A Sparse Set of Texture Features [13]. The textures have been taken from Brodatz
[12]. A window size of n = 41 pixels is used for computing a texture patch. Both 3.6a and 3.6b show
a texture image with its shifted version. The bottom row image shows the texture comparison result as
explained in the text. Note the 30 pixels wide high texture high dissimilarity in both cases - but a higher
amount of noise in 3.6b due to mismatches from long vertical texture streaks.

technique for texture analysis is quite popular, Brox [13] argues that Gabor energy extracts the magnitude,
orientation and scale of local texture - texture properties which are hidden in highly redundant texture.
Gabor energy might hold the right amount of information for texture regeneration, but can be condensed
for texture discrimination. In short, the advantage of discriminative texture models is that they lead to
a low-dimensional feature space.

In this thesis we use a discriminative texture model, A Sparse Set of Texture Features [13] for finding
how similar two regions of texture are. They are built using structure tensor (second moment matrix)
which integrates information from the neighborhood using “nonlinear diffusion, in particular by TV flow”.
This construction is more effective in preserving discontinuities than structure tensors which use Gaussian
convolution. The feature vector output by this method is:

T :=

(
J11, J22, J12,

1

m̄
, PI

)
where (J11, J22, J12) are structure tensor components which have undergone a nonlinear coupled isotropic
matrix valued diffusion to give texture strength and orientation. 1

m̄ is the texture scale measure giving the
average speed of change of the pixel intensity in a Total Variational framework. PI is the pixel intensity.

To deal with texture comparisons, Brox [13] proposes a method to compare texture patches:

∆T =
1

M

M∑
k=1

(
µ(T1,k)− µ(T2,k)

σ(T1,k) + σ(T2,k)

)2

26

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

where T1,k and T2,k denote feature k of the two texture patches which we need to compare; M = 5 is
the number of texture features; µ and σ are the mean and standard-deviation of the given k feature.

Since, we would like to use the same technique for image comparison, we need to develop a sense of
texture patch for each pixel. For this purpose we use a window-based approach, where each pixel’s texture
is the n × n neighborhood surrounding it. Using this neighborhood, both µ and σ are computed. After
computing both these statistics for each pixel, we will advect them for I1 by a candidate flow algorithm
and compare these with statistics of I2 to get a texture dissimilarity measure:

fnST(x, y, z, A) =
1

M

M∑
k=1

(
µn(T1,z,k(x, y))− bicubic(µn(T2,z,k(x+ u(x, y,A), y + v(x, y,A))))

σn(T1,z,k(x, y)) + bicubic(σn(T2,z,k(x+ u(x, y,A), y + v(x, y,A))))

)2

where µn(T1,z,k(x, y)) denotes the mean of texture feature k at pixel (x, y) of I1,z computed on a n × n
window, and so on. u(x, y,A) and v(x, y,A) are flow vectors at the given pixel by the flow algorithm A,
and z is the pyramid level. See Figure 3.6 for example results. The results of our experiments of changing
the window size n of fST are given in Section 4.4.

We also experimented with a different statistic based on A Sparse Set of Texture Features. Unlike fST,
here we compute a pixel-wise statistic. This method not only makes it quicker than fST but also performs
better than fST in regions with little texture (since here the window is 1× 1 pixel). Like before we advect
T2,k using a candidate flow algorithm. Using the advected texture we compute the Mahalanobis distance
per pixel between the two texture features:

fSTm(x, y, z, A) =

√√√√ M∑
k=1

(T1,z,k(x, y)− bicubic (T2,z,k(x+ u(x, y,A), y + v(x, y,A))))
2

σ2
z,k

here σ2
z,k is the variance (over both T1,z,k and T2,z,k) of feature k at pyramid level z. Although texture

is not a local property, this is a valid statistic for comparing texture since the feature for each pixel is
influenced by its neighbors due to TV flow. The comparative results of fST and fSTm are discussed in
Section 4.4.

A MATLAB implementation of A Sparse Set of Texture Features from http://www.csc.kth.se/~omida/

has been used. With it, we use a MEX C++ implementation of Nonlinear Coupled Diffusion borrowed from
the same source. Our MATLAB class SparseSetTextureFeature2 computes fnST whereas SparseSetTextureFeature
computes fSTm. These implementations are given in Appendix .1. Both classes interact with A Sparse
Set of Texture Features to compute texture.

3.2.2 Features based on Optical Flow

The motivation for basing some features on dense flow algorithms is to take advantage of the fact that
these methods tend to break down around regions of occlusion. Most of the features we discuss rely on
detecting these inconsistencies in flow, both spatially and temporally. In this section we discuss these
features based on optical flow. Before we do so, we describe briefly the flow algorithms we employ.

Note that both features based on Photo Constancy (Section 3.2.1) and Sparse set of Texture Features
(Section 3.2.1) could have been described as flow based approaches - but they are categorized to Section
3.2.1 since they explicitly use some image properties.

27

http://www.csc.kth.se/~omida/

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

Optical Flow methods used

Our first candidate flow algorithm was proposed by Horn and Schunck [24] which is a differential technique
to compute flow. By taylor expansion of the brightness constancy assumption, they suggest computing the
speed and direction of the pixel using partial derivatives of the image brightness with respect to x, y and
t. Moreover, they argue that the computation of flow locally on a pixel is an under-constrained problem
(the aperture problem). Since flow should change smoothly in most regions, additional constraints are
imposed by having smoothness of flow in a neighborhood.

The assumption of having similar flow in a neighborhood breaks down at depth or motion discon-
tinuities and at transparencies. Building on top of [24], our second algorithm, suggested by Black and
Anandan [5] relaxes the requirement of constancy of flow in a neighborhood. They suggest estimation
of flow which aims to compute sharp motion discontinuities. Using robust statistics which treats motion
discontinuities as “outliers” in a statistical framework. The method focuses on the recovery of multiple
parametric motion models within a region, as well as the recovery of piecewise smooth flow fields.

In our set of flow algorithms, we use two methods based on total variation. The first one, proposed
by Wedel et al. [58], gives improvements on top of the original TV−L1 optical flow algorithm. They
decompose images into structure and texture to reduce the effects due to illumination changes. They
also suggest using a median filter to flow fields to increase the robustness of the method. Our second
total variation method, Huber−L1 formulated by [59], uses anisotropic regularization in order to conform
well with the underlying image structure. In an effort aimed toward video restoration, they drop the
assumption of gradual flow changes over time, in lieu of a symmetry constraint with respect to the central
frame in the sequence.

In order to deal with large motion, we add the method suggested by Brox and Malik [14] to our arsenal
of flow algorithms. Rather than employing a coarse-to-fine technique to recover motion, they use local
descriptor matching to correspond regions with large flow. This is done in conjunction with a variational
framework to avoid the problem of outliers.

Sun et al. [55], Baker et al. [1] argue that the basic formulation of flow has not changed much since Horn
and Schunck [24]. They suggest that all flow algorithms develop an objective function which combines a
data constancy term, to maintain constancy of some image property; with a spatial term, to model how
the flow should change spatially. This objective function is then optimized in a computationally tractable
way. The “Classic+NL” flow algorithm, proposed by Sun et al. [55], suggests applying median filter to
intermediate flow values during incremental estimation of flow to improve the objective function. They
also suggest incorporating image structure using a spatially weighted term to avoid smoothing over image
boundaries.

The implementations used for all these algorithms have been provided by their respective authors. The
MATLAB classes those compute these features are HornSchunckOF, BlackAnandanOF, TVL1OF, HuberL1OF,
LargeDisplacementOF, and ClassicNLOF are given in Appendix .1.

In our experiments we observed Classic+NL and Huber−L1 to be the best performing flow algorithms
for detecting occlusion using our features.

Temporal Gradient

One method of finding where flow algorithms perform badly, as suggested by Mac Aodha et al. [29], is to
take derivatives of flow fields. Such temporal gradient is a good indicator for motion boundaries, which

28

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

should make it a reasonable feature to classify occluded pixels. It is computed as:

fTG,x(x, y, z) = ‖∇ū‖

fTG,y(x, y, z) = ‖∇v̄‖

Here ū and v̄ is the median flow for our candidate flow algorithms, and z is the pyramid level. This feature
is not amongst the best performers in our set, partly because motion boundaries do not always co-occur
with occlusions in a scene.

The MATLAB implementation of this feature is present in the class TemporalGradFeature. This is given
in Appendix .1.

Flow vector features

The following set of features hypothesize that flow in occlusion regions should be noisy. This is a reason-
able assumption because: (1) occlusions lie close to motion boundaries where flow looks like a random
perturbation of the actual flow; (2) flow assigned to regions of occlusion is usually invalid, and is incorrectly
regularized.

To check this noise in flow, we analyze the variance in the direction of flow vectors. This Angle
Variance is computed in a small n × n square window surrounding each pixel (see Section 4.4 for a
discussion on the window size). To make the notation simpler we denote the half window size as w =
(n− 1)/2:

θ(x, y, z, A) = arctan [v(x, y, z, A) / u(x, y, z, A)]

θnµ(x, y, z, A) =

∑w
c=−w

∑w
r=−w θ(x+ c, y + r, z, A)

n2

fnAV(x, y, z, A) =

∑w
c=−w

∑w
r=−w

(
θ(x+ c, y + r, z, A)− θnµ(x, y, z, A)

)2
n2

as before, A is the candidate flow algorithm, and z is the pyramid level of the flow on which the feature
is computed. Similarly, we compute the variance of the length of optical flow vectors in an n×n window.
This Length Variance is computed as:

L(x, y, z, A) =
√
u(x, y, z, A)2 + v(x, y, z, A)2

Lnµ(x, y, z, A) =

∑w
c=−w

∑w
r=−w L(x+ c, y + r, z, A)

n2

fnLV(x, y, z, A) =

∑w
c=−w

∑w
r=−w

(
L(x+ c, y + r, z, A)− Lnµ(x, y, z, A)

)2
n2

Surprisingly, Length Variance performs much better than Angle Variance in our tests. This indicates that
flow algorithms used in our framework regularize the direction of flow more than the length at occlusion
pixels.

Another method of finding occlusion regions is to see if flow in a neighborhood indicates directions
which can lead to an overlap of pixels. If we know the width of the occlusion region, we can compute such
a feature by looking at flow at pixels beyond that width - which should be headed for collision. Note that

29

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

(a) fnCS (b) fRC (c) fRA

Figure 3.7: Illustrates the idea behind the features fnCS, fRC and fnRA. Figure 3.7a shows the computation
of time t for computing the three features of fnCS. This is done by selecting a pixel from the green region
and the diagonally opposite pixel in the blue region; projecting the flow onto the diagonal; and computing
the time. Figure 3.7b shows the computation of fRC as the distance after loopback flow. Figure 3.7c
illustrates fRA as the angle difference between the two corresponding flow vectors in I1 and I2

for this method to work, accuracy of flow is needed on non-occluded pixels and not at occlusion regions
themselves. We formulate this Colliding Speed feature over an n× n pixels neighborhood in which we
observe the “time” it would take for pairs of diagonally opposite pixels to collide. These pixel pairs are
centered around the current pixel under consideration for occlusion. This time metric can be computed
because we know the distance between the pair of pixels and the speed at which they are approaching
each other. We consider the time before collision as a metric for measuring chances of occlusion, since it
quantifies the urgency for occlusion.

If we consider the pixel (x, y), we can get two diagonally opposite pixels (x− i, y−j) and (x+ i, y+j),

where the distance between them is 2
√
i2 + j2. To compute the speed of approach, we first need to project

the flow vectors on the line/vector connecting the two pixels. This direction on which the projection
needs to happen is ~v = 〈i, j〉. Now, the time before collision is computed by dividing the distance with
the projected speed:

~u(x, y, i, j, z, A) = 〈u(x+ i, y + j, z, A), v(x+ i, y + j, z, A)〉

t(x, y, i, j, z, A) =
2
√
i2 + j2

proj~v(~u(x, y, i, j, z, A)) + proj~v(~u(x, y,−i,−j, z, A))

For an n× n neighborhood, this static can be computed for (n2 − 1)/2 pixel pairs. But, not all of these
pairs hold essential information for deciding the occlusion of a pixel. Our tests show that condensing this

30

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

feature to three statistics is reasonable: the maximum maximum time, minimum time and time variance:

N = { {(0, 0), (0, 1), . . . , (1,−w), . . . , (1, w), . . . , (w,w)} \ (0, T) : T ≤ 0 }

fnCS,max(x, y, z, A) = inf { t(x, y, i, j, z, A) : (i, j) ∈ N}

fnCS,min(x, y, z, A) = − inf { −t(x, y, i, j, z, A) : (i, j) ∈ N }

fnCS,σ2(x, y, z, A) = E
[
t(x, y, i, j, z, A)2

]
where (i, j) ∈ N

Note that fnCS,max, at best, would be inversely proportional to the propensity of occlusion at a pixel. As
expected, our tests show that fnCS,min is the most important among these 3 statistics (see Figure 4.10).

Our MATLAB implementations of the features mentioned are given in classes OFAngleVarianceFeature,
OFLengthVarianceFeature, and OFCollidingSpeedFeature. These are given in Appendix .1.

Reverse flow features

Since we can compute flow from not only I1 to I2, but also in reverse, some features can be naturally
developed using these dual flow vectors. In this section we will refer to u(·) and v(·) as flow from I1 to
I2, and ur(·) and vr(·) as the reverse flow in the direction I2 to I1.

The first obvious feature to use is to find the difference in locations when going forward by the flow
〈u, v〉 to reach the position (x′, y′) in I2; and then backward by flow 〈ur, vr〉 to reach a pixel in I1. If flow
is perfect in both directions, we should arrive back at the pixel we started from in I1. Since we expect
flow on occluded pixels to be invalid, this loop-back path using forward and reverse flow should result in
a location which is far from the original. Hence, we compute our Reverse Constancy feature as the
euclidean distance from the original pixel after this loopback:

(x′, y′)z,A = round (x+ u(x, y, z, A), y + v(x, y, z, A))

fRC(x, y, z, A) = ‖x− (x′ + ur(x
′, y′, z, A)), y − (y′ + vr(x

′, y′, z, A))‖

z here is the pyramid level, and A is the candidate flow algorihtm whose flow is used. Similarly, if both
set of flow is perfect, the angle difference between the two should be πrad.. Our Reverse Flow Angle
Difference feature is computed as:

fRA(x, y, z, A) = |π − arccos [u(x, y, z, A) · ur(x′, y′, z, A)] |

The MATLAB classes ReverseFlowConstancyFeature and ReverseFlowAngleDiffFeature used for com-
puting these features are given in Appendix .1.

3.2.3 Other Features experimented

The following are features we tested, but dropped from the final set of features due to the reasons stated.

Gradient Magnitude

Mac Aodha et al. [29] uses gradient magnitude of I1 to measure textured-ness in a scene:

fGM(x, y, z) = ‖∇I1,z(x, y)‖

31

Ahmad Humayun Chapter 3: The Occlusion Classification Algorithm

(a) Pb. posterior probability (b) Pb. Edge Distance (c) Canny Edge Distance

Figure 3.8: 3.8a shows Probability of Boundary (Pb.) edge classification result on image given in Figure
4.1c. Notice that each edge is given an edge-strength according to its posterior probability of being a
surface boundary. Brighter edges shown here are of higher edge-strength. 3.8b shows the Edge Distance
feature after thresholding 3.8a at 0.2. In comparison, 3.8c shows Edge Distance using canny edge detector.
Notice the added noise in 3.8c, but the disappearance of edges of pillar and the right-most crate in 3.8b

where z is the pyramid level. We tried this feature to see if the correlation of gradient magnitude with
edge boundaries would help us find pixels close to regions of occlusion. Although this feature does well in
assigning high values to surface boundaries, the random forest classifier does not assign much importance
to it because: (1) gradient magnitude is not only high at edges but also large on areas of significant
texture; (2) the Edge Distance feature (see Section 3.2.1) makes the former slightly redundant.

The MATLAB class GradientMagFeature, used to compute this feature, is given in Appendix .1.

Pb. Edge Classifier

Apart from using a canny edge detector for Edge Distance feature (see Section 3.2.1), we also evaluated
the Probability of Boundary (Pb.) edge classifier proposed by Martin et al. [33]. As compared to canny,
which attempts to find any abrupt changes in pixels, Pb. tries to mark edges wherever pixels move from
surface of one object to another. Like our occlusion detection method, Pb. edges are also computed by
combining features and using them in a supervised classification framework (their ground-truth comes from
a database of human-marked boundaries [31]). Martin et al. [33] propose four features to classify a pixel
as a boundary. To detect brightness edges, Oriented Energy is computed from even and odd-symmetric
filter responses at a certain orientations. The remaining three gradient features compare statistics over
opposing halves of a circle along a given angle. To compute Brightness and Color Gradient features,
kernel density estimates of the distributions of pixel luminance and chrominance are binned in each disc
half. For Texture Gradient, histograms of vector quantized filter outputs are computed for each half.
These four features are evolved to make features for classification using first-order approximation of the
distance to the nearest maximum. These features are then combined using logistic regression. We denote
this feature at a pixel as:

fTPB(x, y, z) = distTrans(Pb. > T)

where z is the pyramid level, and T is the threshold used on the posterior probability output by the Pb.
edge classifier.

The reason for not adopting Pb. over canny edge classifier for Edge Distance feature is partially due
to the speed of computing it on an image pyramid. It can take up to 2 hours to compute the pyramid
on any one of our sequences (Intel Core 2 Duo 2.5GHz). Using Pb. without any pyramid levels was

32

Chapter 3: The Occlusion Classification Algorithm Ahmad Humayun

tested against 10 pyramid levels of canny. The results show that computing on scale is necessary for
an edge distance feature (see Section 4.4). The second reason for not using Pb. is the misclassification
of some edges in synthetic scenes. We think that this is largely due to training on only natural scenes.
Although the Pb. edge classifier has found wide use, due to the lack of occlusion-marked training sets on
natural scenes, we don’t achieve the performance one would expect using a feature based on Pb. edge
classification. Nevertheless, if a feature is successfully developed using Pb., the strength of boundaries
could play some role in discriminating which are surface boundaries as opposed to texture edges - an
important cue for occlusion classification.

We use a MATLAB implementation of Pb. edge classifier given at http://www.eecs.berkeley.edu/

Research/Projects/CS/vision/grouping/segbench/. The MATLAB class PbEdgeStrengthFeature, which
interacts with these implementations, is given in Appendix .1.

33

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Chapter 4

Evaluation / Experiments

The training phase in any learning technique plays a critical role. Selecting the set of sequences providing
ideal characteristics to “learn” on, while avoiding any overfit over training is the theme of this chapter.
After giving the methodology behind our tests, the second Section (4.2) describes the dataset we have
chosen. In Section 4.3 we look at tweaking the parameters of the Random Forests (see Section 3.1.2) to
achieve optimal performance on our tests. In Section 4.4 we evaluate individual and collective features
to discover their strengths and weaknesses. The remaining sections look at particular problems in our
classification and proposes solutions. Section 4.5 discusses the classification on within-FOV pixels, and
steps taken to quantitatively analyze it. In Section 4.6 we explore the role texture plays in the performance
of our technique. Since the majority of our features are dependent on optical flow, we will look at training
and testing our method with Ground-Truth flow in Section 4.7. This will illustrate the power of our
technique if the input flow was close to ideal. In Chapter 5 we show results on unseen sequences.

4.1 Methodology of Evaluation

To evaluate any classification framework, we need to carefully choose our tests to identify key problems
with the system. Since we use random forests our concern would be more toward what feature parameters
are right to achieve optimal performance rather than what features are redundant and need to be discarded.
This is because forests are trained to use features more often which closely correlate with the output label
(see Section 3.1.2)

As discussed in Section 4.2, it is important to have a dataset which provides examples that would
occur in the wild. The performance of the classifier on unseen data would depend on this choice. Since
we have a limited sized dataset it is also important to choose a reasonable training and testing technique.
To remove the need to have two separate training and testing datasets, we use K-fold cross-validation
[21]. Using cross-validation, the dataset is divided into k partitions (k sequences in our case), and on each
round the classifier is trained on k− 1 partitions, and tested on the remaining partition. “K-fold” refrers
to this process being repeated k times to average results. If the dataset is representative of the unseen
data the classifier will be tested on, these average results are good estimates of the classifier’s accuracy.
Throughout this chapter we will show results on partitions (sequence) using cross-validation.

To analyze the results of one round of cross-validation, we use the receiver operating characteristic
(ROC). ROC is a graph of true positives (TP) against false positives (FP), as we adjust some metric. In
our case this metric is the threshold on the posterior probability of each data-point output by the random

34

Chapter 4: Evaluation / Experiments Ahmad Humayun

forest (based on votes on its leaves). The aim of a classifier should be to get as many true positives
without incurring false positives i.e. reaching the top left point (0, 1) of the ROC graph. The area under
the ROC curve A ∈ [0, 1] (AUC) is a single number which used throughout this thesis for judging the
classifier’s performance.

Once we have an ROC curve, we might want to choose an appropriate threshold to get a binary output.
To get this “best” threshold, we select the point where the gradient of the ROC curve is:

β =
N CFP

P CFN
(4.1)

where N is the total number of negatives, and P is the total number of positives. CFP and CFN are the
costs of false positive and false negative respectively.

4.2 Training Dataset

Our training dataset has 10 sequences shown in Figure 4.1: 2 natural sequences from Baker et al. [1]; and
8 synthetic sequences from Mac Aodha et al. [29]. All 8 synthetic sequences are static scenes where only
the camera moves. The movement is significant but cannot be categorized as wide-baseline. They were
modeled and lighted using Maya, and the ground-truth flow (including occlusion markings) was computed
using a Maya Mel scripts. This involves projecting the 3D motion of the scene corresponding to I1 onto
the 2D image plane. Furthermore we use a few variations of sequences given in Figure 4.1c and 4.1d to
test the effect of texture on our classification. The results are given in Section 4.6.

The complete middlebury dataset [1] provides three types of sequences with GT: real imagery of
nonrigidly moving scenes; synthetic imagery; and real stereo imagery adjusted for optical flow. The GT
for synthetic and real stereo imagery does not have the occlusion regions marked. Even though these
sequences cannot be used for training, they will be used in Section 4.7 for training and testing using exact
flow.

The paucity of natural ground-truth flow sequences is understandable as collecting them is non-trivial.
For years its need was felt amongst researchers working on motion, who have largely coped with rudimen-
tary synthetic sequences. In an effort to fill this void, Baker et al. [1] provide real imagery of nonrigidly
moving scenes with GT which has regions marked wherever flow is inapplicable. These scenes are built
using a real computer-controlled motion stage, where the camera is stationary but the objects in the scene
move in a non-rigid fashion. To compute the GT, each object in the scene is splattered with fluorescent
paints closely matching the color of the surfaces. The scene is then captured under both ambient and
UV lighting. Note that fluorescent paint absorbs UV light but reflects light in the visible spectrum - this
allows scene capture and GT capture from the same camera. To maintain accuracy, flow is computed on
high-resolution images while their low-resolution versions are distributed.

The GT flow is computed using a brute-force SSD tracker searching in a small window. The re-
sults of all flow vectors are cross-checked by tracking both forward and backward while requiring perfect
correspondence. Pixels that fail cross-checking are marked as occluded. Baker et al. [1] mentions that
although the chance of failure is low with cross-checking, the method is not fool-proof. Even using this
robust technique, some valid visible regions get misclassified as occlusions. Moreover, since the aim of
the dataset is to provide accurate GT flow, and not reliable markings of occlusions, they can argue for
making flow unavailable at regions where there is even slight uncertainty. Contrary to their aims, we are
concerned with the accuracy of occlusion markings, and not with the accuracy of flow. To deal with the
most apparent mis-classifications in the 2 sequences used, we attempt to manually mark pixels wherever
we believe that an “occlusion” was marked in GT not because of an actual occlusion, but due to the

35

Ahmad Humayun Chapter 4: Evaluation / Experiments

(a) Rubberwhale [1] (b) Hydrangea [1] (c) Crates1 [29] (d) Crates2 [29] (e) BrickBox1 [29]

(f) BrickBox2 [29] (g) Mayan1 [29] (h) Mayan2 [29] (i) Sponza1 [29] (j) Sponza2 [29]

Figure 4.1: Dataset used for training the Random Forest classifier. Each of these is a 2 frame sequence.
The first image for each sequence shows the first frame I1 of the sequence, and the second image shows
the Ground-Truth (GT) flow. 4.1a and 4.1b are the only natural sequences, taken from the middlebury
flow dataset [1]. The areas marked black in the GT are regions of occlusion. The middlebury dataset
marks black regions based on the reliability of tracks of those pixels - hence, some pixels amongst them
are not occluded. These mistakes have been partially corrected (see Figure 4.2).

failure of the SSD tracker to cross-check flow accurately. An example of these markings is given in Figure
4.2. These pixels of uncertain occlusions are ignored while training our random forest classifier.

The 10 combined sequences are sufficient for training and testing since they contain a good mix of
textured / non-textured; camera motion / non-rigid subject motion; and small area occlusions / wide
occlusion sequences. This training set contains nearly 136k occluded pixels, and 1851k odd non-occluded
pixels.

36

Chapter 4: Evaluation / Experiments Ahmad Humayun

Figure 4.2: Shows some pixels from Figure 4.1a which are marked as unreliable for training the forest. The
left-side shows I1 from the sequence overlayed with the occlusion regions from the Ground-Truth (GT).
The right-side shows an inset of the GT with some errors overlayed in red. The respective inset from the
two image sequence is shown at the bottom. Notice, how the ceramic behind the shell has moved towards
the left - making its right boundary “visible” rather than “occluded”. Also note the invalid (not-occluded)
spots around the ceramic boundary. Some of these errors have been manually identified and marked in
red. These red regions will not be used for training the classifier.

4.3 Random Forest Evaluation

4.3.1 Random Forest Parameters

In one of our experiments we tried tweaking the parameters of random forests to evaluate the performance
of the forest itself and find the ideal parameters. We considered 4 parameters which might have an effect
on our results: m is the number of random features offered to each node for making node impurity
decisions; d is the maximum depth allowed for each classification tree in the forest; t is the maximum
number of trees the forest is allowed to grow; and c is the minimum number of samples needed on a node
to allow a split. For greater detail on these parameters, refer to Section 3.1.2.

Figure 4.3 shows the area under the receiver operating characteristic (ROC) produced by individually
testing the four parameters shown above. The ROC curves are generated by thresholding the posterior
probability output by the random forest. If not stated otherwise in these tests, m = 4, d = 30, t = 100,

37

Ahmad Humayun Chapter 4: Evaluation / Experiments

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

No. of random features chosen on each node (m)

A
re

a
un

de
r

R
O

C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(a)

0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

Maximum depth of each tree

A
re

a
un

de
r

R
O

C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(b)

0 50 100 150
0.5

0.6

0.7

0.8

0.9

1

Maximum no. of trees in forest

A
re

a
un

de
r

R
O

C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(c)

0 50 100 150 200 250 300
0.5

0.6

0.7

0.8

0.9

1

Min. samples on node for splitting

A
re

a
un

de
r

R
O

C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(d)

Figure 4.3: Shows four cases of adjusting parameters on the random forest. All graphs display the area
under the receiver operating characteristic (built by thresholding the output posterior) of a random forest
by cross-validation - training on all sequences except the one it is being tested on. Note y-axis in all
plots are in the range [0.5− 1.0]. Figure 4.3a shows the effect of changing the number of random features
(m) used for computing node impurity. Figure 4.3b shows results of changing the maximum depth a
classification tree is allowed to reach. Figure 4.3c shows the maximum number of trees in a forest is
allowed to grow. The last plot, Figure 4.3d, shows the effect of increasing the minimum number of
samples on a node to allow a split.

and c = 25. The features used are:

xi = { fGM(x, y, [1− 10]), fED(x, y, [1− 10]), fTG,x(x, y, [1− 10]), fTG,y(x, y, [1− 10]),

f3
AV(x, y, [1− 4], [1− k]), f3

LV(x, y, [1− 4], [1− k]), f3
CS,max(x, y, [1− 4], [1− k]),

f3
CS,min(x, y, [1− 4], [1− k]), f3

CS,σ2(x, y, [1− 4], [1− k]), fPC(x, y, [1], [1− k]) }

where k = 6 is the number of flow algorithms as explained in Section 3.2.2. For more explanation on these
features, refer to Section 3.2.

We experimented with m in the range of 1 to 40. One expects that decreasing the number of random
features m chosen for computing node impurity at node should also increase the misclassification rate
of the forest. Observe in Figure 4.3a that decreasing m does not drastically reduce the classification
accuracy. We can explain this by noting that by reducing m, the number of nodes in the forest might
even increase depending on the stopping criterion for each tree. If this is so, the classification accuracy
will only be slightly effected since the trees in the forest keeps splitting data until the results are within
a certain accuracy. Hence for this feature length, m ≥ 5 works well.

We also experimented with changing the maximum allowed depth d for the trees in the forest from 1
to 50. As expected, the classification accuracy drops when the trees are not allowed to extend the depth
below which they were still adding nodes. Figure 4.3b indicates that at-least some trees were reaching a
depth of 20. Hence for our tests we have maintained d ≥ 20.

Another critical parameter is the maximum number of trees t allowed in the forest. We experimented
with values between 1 and 180, and we observed that 25 or less trees can have severe detrimental effects
on the accuracy of the forest. This effect can be attributed to the fact that forests produce a posterior
probability by averaging votes on all trees - decreasing the number of trees increases the chances of
collecting votes from a badly trained tree. Setting maximum trees t ≥ 50 gives reasonable results.

The last parameter we experimented with is c, the minimum number of samples required on a node
to a allow the tree to split the node. We tested a wide range of values for c between 10 and 300. As can

38

Chapter 4: Evaluation / Experiments Ahmad Humayun

0 5000 10000 15000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

No. of training samples per class (nc)

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(a)

3 4 5 6 7 8 9
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

No. of training sequences (ns)

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(b)

Figure 4.4: Shows two experiments where the samples given to the random forest are varied (see Figure
4.3 for an explanation on ROC plots). Figure 4.4a shows the effect of changing the number of data points
(nc) sampled randomly from each sequence for each class. Figure 4.4b shows choosing ns number of
sequences randomly for training.

be seen in Figure 4.3d, changing c has little effect on the forest’s performance, even though we expect it
to decrease with increasing c. We can reason from the results that although the classification accuracy
should decrease when large amount of samples are not allowed to split on a node, it also helps avoid
situations where we over-fit on the training set. Hence using a c ≤ 150 works well for our framework.

Concluding from these tests, we use m = 11, d = 35, t = 105, and c = 20 throughout this thesis for
training random forests.

4.3.2 Random Forest Training Set

We also experimented with changing the number of samples used for training. Having a low amount of
training samples can severely effect the performance of a supervised classification method. Nevertheless,
if sampling randomly from the training set, using large amounts of data not only makes learning slow,
but it is also redundant. Moreover, with some supervised methods, using large training sets can also lead
to overfitting problems. See Section 3.1.2 to see how random forests avoids this problem while training.

We did two experiments where the number and quality of samples given for training was varied. Given
that for each test we have 9 sequences available for training (after removing the sequence we are going
to test on), we randomly sample nc pixels for each class (occluded and not-occluded) from each sequence
i.e. we have 9nc samples for each class to train on. Our results of varying nc from 30 to 15000 are given
in Figure 4.4a. Surprisingly the forest accuracy is reasonable even when nc = 600.

The more interesting case is when we keep the number of samples for each class from a sequence
constant, nc = 7000, and vary the number of training sequences ns itself i.e. we train with 7000ns
samples for each class. Figure 4.4b shows results when we use 3 to 9 sequences for training. Since the

39

Ahmad Humayun Chapter 4: Evaluation / Experiments

3 4 5 6 7 8 9
0.5

0.6

0.7

0.8

0.9

1

Window Size n× n for fn
AV, f

n
LV, f

n
CS (n)

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(a)

0 5 10 15
0.5

0.6

0.7

0.8

0.9

1

image pyramid levels for fPC

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1i

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.2

0.4

0.6

0.8

1

threshold levels for fPB

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1f
Sequence Fig 4.1i

(c)

0 10 20 30 40
0.5

0.6

0.7

0.8

0.9

1

Window Size n× n for fn
ST (n)

A
re
a
u
n
d
er

R
O
C

Sequence Fig 4.1a
Sequence Fig 4.1c
Sequence Fig 4.1f
Sequence Fig 4.1i

(d)

Figure 4.5: Shows four different experiments for finding the right parameters for different features. All
figures show plots of area under the ROC curve (see Figure 4.3 for an explanation on ROC plots). The
first Figure 4.5a shows the effect of increasing the window size for fnAV, f

n
LV, f

n
CS trained in a single forest.

Figure 4.5b plots the effect of varying the number of image pyramid levels for fPC. The third plot, Figure
4.5c shows comparisons between fED (computed on a pyramid) against fPB (not computed on a pyramid).
Results for 4 sequences are shown for fPB, whereas the horizontal line gives the average area under the
ROC using fED on the same sequences. Note that y-axis in this plot is in the range [0.0 − 1.0]. Figure
4.5d plots the result of changing the window size used in fST. Results for 4 sequences are shown, and the
horizontal line gives the average area under the ROC using fSTm for the same sequences.

dataset is a mixture of synthetic and natural sequences, the classifier accuracy greatly depends on what
actual sequences it got to train on. Notice how the classifier does better on sequence 4.1c than on sequence
4.1a when ns = 3, but the opposite is true when ns = 4. Note on each ns a new random set of sequences
is chosen.

For these tests we used the same feature set x used in Section 4.3.1. We trained on a random forest
with the parameters which were decided in the same section.

We can conclude from these tests that although the number of samples taken from each sequence for
each class nc can be low, but it does not hurt the classifier performance when it is high (no overfitting).
Hence, throughout this thesis we use nc = 7000. Relating to the second test, it is best to use samples
from all sequences (ns = 9) for better generalization of the classifier.

4.4 Features

As discussed in Section 3.2, some features have parameters which need testing. We test these parameters
by training the random forest classifier using only the feature in question. The forest is trained each time
by a new variation on the parameter while everything else is kept constant.

In the first experiment we test the effect of changing the window size n× n using the feature set:

xi = { fnAV(x, y, [1− 4], [1− k]), fnLV(x, y, [1− 4], [1− k]), fnCS,max(x, y, [1− 4], [1− k]),

fnCS,min(x, y, [1− 4], [1− k]), fnCS,σ2(x, y, [1− 4], [1− k]) }

where k = 6 is the number of flow algorithms. Note that all these features use a neighborhood window
to compute statistics (see Section 3.2.2). Our results of testing with a window size from 3 × 3 to 9 × 9
are given in Figure 4.5a. Interestingly, we get better results when the window size is small. This could be

40

Chapter 4: Evaluation / Experiments Ahmad Humayun

because bigger windows are prone to smoothing statistics across object boundaries. Although a significant
window size is required for collecting reliable statistics, bigger windows are also prone to returning values
close to motion boundaries which are reminiscent of occlusion. Deriving from these results, we conclude
that a 3 × 3 pixels window works best for these features. We use this window size for these features
throughout this thesis, unless stated otherwise.

The second set of experiments is about finding the number of pyramid scales up-to which fPC is
effective. Photo-constancy is one of the best performing features in our set - and it was initially observed
that computing it on an increasing depth of the pyramid decreased the misclassification rate. This test
shows that after 4 levels, computing fPC on pyramid has diminishing returns (see Figure 4.5b. This is
also apparent in the variable ranking returned by the random forest. Note that the rescaling factor for
the pyramid is set to 0.8.

As described in Section 3.2 we experiment with computing edge distance from the outputs given by
a Pb. edge classifier and the canny edge detector. These features attempt to find occlusions occurring
close to object boundaries. The Pb. edge classifier is built for the purpose of distinguishing true surface
edges from strong pixel contrasts within a surface - an ideal property to have in our feature vector. Figure
4.5c shows the effect of varying the threshold T (see Section 3.2.3) applied on the posterior probability
returned by Pb.. The classifier’s performance fED is also given as a horizontal line. fED shows comparable
performance to fTPC since its computed on a 10 level image pyramid. These test show that scaling is
important for an edge-distance feature. We use fED in our final set features instead of fTPB because of the
reasonable performance of canny in these results and other reasons discussed in Section 3.2.3.

As discussed in Section 3.2.1, we experiment with two texture statistics based on the same underlying
texture feature. Since we need to compare a pixel’s texture to another pixel we have the choice of using
a local window based approach (fnST) or a pixel-wise statistic (fSTm). By changing the window size n of

(a) f3ST on seq. 4.1a (b) f3ST on seq. 4.1c (c) f3ST on seq. 4.1d (d) f3ST on seq. 4.1g (e) f3ST on seq. 4.1i

(f) fSTm on seq. 4.1a (g) fSTm on seq. 4.1c (h) fSTm on seq. 4.1d (i) fSTm on seq. 4.1g (j) fSTm on seq. 4.1i

Figure 4.6: Comparison of f3
ST (first row) against fSTm (second row). The green overlay over the image

shows true positives; the red overlay shows false negatives; and the yellow overlay shows false positives.
The images were produced by thresholding the posterior output by the forest with a threshold using
Equation 4.1 where CFP = 1 and CFN = 10. Notice how fSTm does better on regions with little texture
as compared to f3

ST. On the other hand, fST3 does better than fSTm on textured regions.

41

Ahmad Humayun Chapter 4: Evaluation / Experiments

seq.
4.1a

seq.
4.1b

seq.
4.1c

seq.
4.1d

seq.
4.1e

seq.
4.1f

seq.
4.1g

seq.
4.1h

seq.
4.1i

seq.
4.1j

fED(x, y, [1− 10]) 0.724 0.702 0.412 0.569 0.598 0.554 0.508 0.612 0.577 0.568

fPC(x, y, [1− 4], [1− k]) 0.948 0.900 0.913 0.970 0.963 0.934 0.945 0.979 0.903 0.893

f3
ST(x, y, [1], [1− k]) 0.945 0.845 0.904 0.958 0.927 0.906 0.921 0.956 0.873 0.868

fSTm(x, y, [1], [1− k]) 0.965 0.904 0.855 0.952 0.926 0.901 0.935 0.972 0.885 0.914

fTG(x, y, [1− 10]) 0.744 0.737 0.540 0.625 0.747 0.612 0.637 0.627 0.520 0.498

f3
AV(x, y, [1− 4], [1− k]) 0.848 0.767 0.389 0.610 0.747 0.571 0.620 0.687 0.757 0.516

f3
LV(x, y, [1− 4], [1− k]) 0.831 0.716 0.685 0.748 0.863 0.747 0.733 0.869 0.800 0.706

f3
CS(x, y, [1− 4], [1− k]) 0.922 0.773 0.672 0.791 0.911 0.746 0.798 0.895 0.881 0.781

fRC(x, y, [1− 10], [1− k]) 0.965 0.896 0.920 0.958 0.964 0.919 0.932 0.973 0.836 0.872

fRA(x, y, [1− 10], [1− k]) 0.963 0.899 0.929 0.976 0.928 0.932 0.942 0.968 0.925 0.854

f3
AV, f

3
LV, f

3
CS 0.961 0.597 0.714 0.810 0.919 0.751 0.819 0.915 0.892 0.788

f3
AV, f

3
LV, f

3
CS, fPC 0.979 0.908 0.924 0.976 0.964 0.956 0.936 0.984 0.943 0.942

All 0.983 0.925 0.913 0.984 0.970 0.958 0.959 0.990 0.942 0.943

fGM(x, y, [1− 10]) 0.706 0.696 0.491 0.583 0.584 0.567 0.551 0.627 0.567 0.522

f .25
PB(x, y, [1]) 0.714 0.551 0.517 0.534 0.474 0.366 0.534 0.555 0.565 0.574

Table 4.1: Shows the results of training a random forest with the features in the left column. Each column
shows the result on a sequence using k-fold cross-validation. Each cell gives area under the ROC curve
(see Figure 4.3 for an explanation on ROC plots). Features below the thick line are not included in the
final set of features. The dark gray row shows results using all the features finalized in a single random
forest. The two lighter gray rows give results of training a forest using a small subset of the features.

fnST we see how it compares to the pixel-wise feature (fSTm). Figure 4.5d shows the effect of using a very
local (1×1) to a wide-area window (43×43). Figure 4.5a shows increasing the window size does not bring
much benefits beyond a 3× 3 window. The same reasons why big windows do not improve classification
accuracy of the experiment given in the Figure 4.5a also apply here. Increasing n has the undesired effect
of smoothing statistics across object boundaries. Concluding from this experiment, we always use n = 3
for fnST.

Looking at the results of a classifier trained on fnST and fSTm individually, it seems that both have
benefits in different regions of the sequence. Understandably, fSTm tends to do better on regions of less
texture whereas fST3 performs better on regions of significant texture. Figure 4.6 shows the random forest
output on 5 test sequences. Notice the performance of the classifiers on the floor in Figure 4.6e and 4.6j
and the wall in Figure 4.6b and 4.6g. Due to this complementary performance, both features f3

ST and
fSTm make it to the final set of features.

42

Chapter 4: Evaluation / Experiments Ahmad Humayun

(a) fED (b) fPC (c) f3ST (d) fSTm (e) fTG

(f) f3AV (g) f3LV (h) f3CS (i) fRC (j) fRA (k) All

Figure 4.7: Performance of random forest on sequence 4.1b using the different set of features. Images on
this page are overlayed with the posterior output using the method explained in Figure 4.6.

(a) fED (b) fPC (c) f3ST (d) fSTm (e) fTG

(f) f3AV (g) f3LV (h) f3CS (i) fRC (j) fRA 4.1c (k) All 4.1c

Figure 4.8: Shows the performance of random forest on sequence 4.1c using the different set of features.

(a) fED (b) fPC (c) f3ST (d) fSTm (e) fTG

(f) f3AV (g) f3LV (h) f3CS (i) fRC (j) fRA (k) All

Figure 4.9: Shows the performance of random forest on sequence 4.1i using the different set of features.

43

Ahmad Humayun Chapter 4: Evaluation / Experiments

4.4.1 Final Feature Set

To evaluate the performance of individual features, we train random forests using only single features.
The same cross-validation technique is used for obtaining comparative results across all sequences. The
results can be seen in Table 4.1.

Observing the results for all features, we finalize our feature set as follows:

xi = { fED(x, y, [1− 10]), fPC(x, y, [1− 4], [1− k]), f3
ST(x, y, [1], [1− k]), fSTm(x, y, [1], [1− k]),

fTG,x(x, y, [1− 10]), fTG,y(x, y, [1− 10]), f3
AV(x, y, [1− 4], [1− k]), f3

LV(x, y, [1− 4], [1− k]),

f3
CS,max(x, y, [1− 4], [1− k]), f3

CS,min(x, y, [1− 4], [1− k]), f3
CS,σ2(x, y, [1− 4], [1− k]),

fRC(x, y, [1− 10], [1− k]), fRA(x, y, [1− 10], [1− k]) }

As discussed in Section 4.4 we observe that fED performs comparatively better than fPB. Also notice
the reasonable performance of features fPC, f3

ST, fSTm, fRC and fRA throughout all the sequences. In
our initial tests we also verified the performance of a classifier trained only using features f3

AV, f3
LV, f3

CS

and f3
PC. The results using these features are quite comparable to a random forest trained using all our

features. At this stage we do not want to discount a large number of features because random forests
are good at ranking and discarding features as need be. Also notice some sequences have visibly higher
misclassification rate. The problems in these sequences will be discussed in the following sections.

Figure 4.7 to 4.9 shows the output posterior overlayed onto the test sequences 4.1b, 4.1c and 4.1i. Notice
how features based on flow do well on out-of-FOV pixels (see Section 4.5). Also note the performance of
features on untextured regions.

For the final set of features, Figure 4.10 shows the importance assigned to each feature by the random

0 10 34 40 46 66 90 114 186 246 306
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Feature no.

F
ea

tu
re

 im
po

rt
an

ce
 %

fED fPC f3
ST

fSTm

fTG f3
AV f3

LV f3
CS f3

RC f3
RA

Figure 4.10: The graph shows the relative importance of variables assigned by the random forest as a
result of training. The values are obtained by averaging all the variable importances output when cross-
validating the 10 sequences given in Section 4.2. The forest was trained with the features finalized for our
classifier. Each feature type is printed on top of the graph.

44

Chapter 4: Evaluation / Experiments Ahmad Humayun

forest. This is the average for cross-validation of the 10 sequences. For fED increasing feature numbers
gives variables when we proceed up in the image pyramid (as Gaussian becomes wider). For features fPC,
f3

AV, f3
LV, fRC and fRA variables are first ordered by the flow algorithms and then with the increasing

Gaussian pyramid scale. fTG is first ordered by pyramid scale and then by its x and y components. The
first 24 features for f3

CS belong to f3
CS,max - which are ordered first by flow algorithms and then by the

pyramid scale. Similarly, the next 24 features in it belong to f3
CS,min, and the next 24 to f3

CS,σ2 . f3
ST and

fSTm are ordered by flow algorithms.

4.5 Cropping out-of-FOV regions

Some pixels move out of the frame when going from image I1 to I2. In our training dataset, this is due to
camera motion in the synthetic training data ([29]) and due to non-rigid object movement in the natural
sequences ([1]). We will call all such pixels as out-of-FOV pixels.

During our experiments, it was apparent that features based on flow performed well on such pixels.
The reason for this good performance could be because there is little need for accuracy from flow at such
regions - as long as a flow algorithm directs a pixel beyond image boundaries, these pixels can be classified
correctly. Needless to say that the dependency of our features on flow make these flow algorithms crucial
in classification of any region. Lowering expectations of accuracy of flow for any pixel will lower the
misclassification rate.

Since we are certain that some features perform well on out-of-FOV regions, it is important to check
the performance sans these pixels. In this section we develop an experiment to analyze the classifier’s
performance only on pixels which stay inside the FOV. To remove influence of these out-of-FOV regions,
we use a mask which blocks features from getting sampled from these regions. These masks are given in
Table 4.2. We use the same set of features finalized in Section 4.4.1 throughout this experiment. Like
before, we use k-fold cross-validation to test the complete training set. Apart from testing with forests
trained on the complete set of features, we also experimented forests trained on single features. This is
done to see which features perform best on within-FOV pixels. As explained in Section 4.4.1, this could
also be done by analyzing the ranking of features given by the random forest - but this method has the
drawback of not giving representative scores when there is strong correlation between features.

To remain fair, all statistics drawn from the output of these forests use only pixels which are not in
the out-of-FOV mask i.e. the ROC produced does not take into account out-of-FOV regions. Table 4.2
shows results from testing using single features and the complete set of final features.

As expected, performance remains unchanges on sequences which have a miniscule number of out-
of-FOV pixels. On other sequences like 4.1c, the performance on within-FOV pixels is below average as
compared to other sequences. This can be attributed to the large amount of camera shift. When this
happens in conjunction with low texture pixels getting occluded, the performance hit can be significant
(see Section 4.6). A similar case occurs for features in

Surprisingly, f3
AV, f3

LV, and f3
CS perform much better when out-of-FOV pixels are not present. This

could be because these flow based features overfit on characteristics of out-of-FOV regions. This is a likely
possibility, since, as stated before, it is easy for features based on flow to learn such regions. Apart from
these three features, fED and fTG also perform better in this experiment. Since the latter is based on
flow, similar reasons can be put forward for its performance improvement. The features based on reverse
flow and texture perform worse in this scenario.

If we can separate features performing well on out-of-FOV pixels from those performing better on
within-FOV regions, we can formulate our problem into a ternary classification task. It is worth a

45

Ahmad Humayun Chapter 4: Evaluation / Experiments

seq.
4.1a

seq.
4.1b

seq.
4.1c

seq.
4.1d

seq.
4.1e

seq.
4.1f

seq.
4.1g

seq.
4.1h

seq.
4.1i

seq.
4.1j

fED(x, y, [1− 10]) 0.829
115%

0.815
116%

0.627
152%

0.658
116%

0.695
116%

0.513
93%

0.544
107%

0.736
120%

0.704
122%

0.759
134%

fPC(x, y, [1− 4], [1− k]) 0.948
100%

0.893
99%

0.723
79%

0.613
63%

0.954
99%

0.850
91%

0.849
90%

0.968
99%

0.871
96%

0.702
79%

fSTm(x, y, [1], [1− k]) 0.953
99%

0.882
98%

0.576
67%

0.645
68%

0.883
95%

0.757
84%

0.871
93%

0.952
98%

0.853
96%

0.797
87%

fTG(x, y, [1− 10]) 0.920
124%

0.886
120%

0.536
99%

0.680
109%

0.865
116%

0.768
125%

0.728
114%

0.799
127%

0.779
150%

0.723
145%

f3
AV(x, y, [1− 4], [1− k]) 0.938

111%
0.869
113%

0.648
167%

0.763
125%

0.853
114%

0.857
150%

0.821
132%

0.887
129%

0.852
113%

0.773
150%

f3
LV(x, y, [1− 4], [1− k]) 0.951

114%
0.895
125%

0.630
92%

0.792
106%

0.933
108%

0.857
115%

0.793
108%

0.922
106%

0.912
114%

0.867
123%

f3
CS(x, y, [1− 4], [1− k]) 0.964

105%
0.900
116%

0.687
102%

0.796
101%

0.936
103%

0.823
110%

0.831
104%

0.947
106%

0.937
106%

0.905
116%

fRC(x, y, [1− 10], [1− k]) 0.960
99%

0.888
99%

0.715
78%

0.692
72%

0.957
99%

0.838
91%

0.831
89%

0.954
98%

0.771
92%

0.684
78%

fRA(x, y, [1− 10], [1− k]) 0.938
97%

0.887
99%

0.723
78%

0.726
74%

0.904
97%

0.826
89%

0.838
89%

0.940
97%

0.892
96%

0.643
75%

All 0.977
99%

0.920
99%

0.684
75%

0.793
81%

0.963
99%

0.895
93%

0.895
93%

0.981
99%

0.951
101%

0.880
93%

Table 4.2: Shows the comparison of a forest trained and tested over all pixels against a forest trained and
tested only over pixels which remain inside the field-of-view (FOV) over the sequence. The header shows
the sequences and the mask used to ignore the out-of-FOV pixels. Like Table 4.1, each column shows the
result (area under the ROC curve - AUC) on a sequence using k-fold cross-validation. The values in gray
show the percentage difference in AUC while training with or without the pixels out-of-FOV (results when
including out-of-FOV pixels shown in Table 4.1). The dark gray row shows results using all the features
finalized in a single random forest. Note the effect on the classification accuracy when the number of
out-of-FOV pixels is significant (sequences 4.1c, 4.1d, 4.1f, 4.1g, and 4.1h).

thought that the our framework might be transformed to a two staged process: in the first we attempt to
find out-of-FOV pixels; and in the second, we mask the out-of-FOV regions found and use features that
perform better within-FOV to classify the remaining pixels. This will result in an output label Y with
values non-occluded, occluded, or out-of-FOV pixels.

46

Chapter 4: Evaluation / Experiments Ahmad Humayun

4.6 Effect of Texture

Observing results of sequence 4.1c, it is apparent where our classifier learns weakly. Since there is no
inference on the scene structure, the forests tend to perform badly whenever there is wide-baseline camera
movement causing large parts of the scene to be occluded. When this occurs on regions lacking texture,
the optical flow algorithms we use tend to compress pixels to a certain region rather than assigning good
flow to some and giving confused flow on occluded pixels. A good example is the left side of the vase
in Figure 4.8k. We think this situation can be improved by having features which explicitly infer scene
structure. For this purpose, many stereo algorithms compute an occlusion map with depth disparities
[53, 56, 37, 63]. Even when computing optical flow, Strecha et al. [52] proposes a solution by considering
large displacement occlusion pixels as hidden quantities in an EM framework. Such techniques can surely
act as additional features in our framework.

In the experiments in this section, we analyze the role of texture on the classification accuracy. The
goal is to vary texture and see the effects on the sequences with wide-baseline camera movement - without
making inferences on the scene structure. Using the sequences 4.1c and 4.1d, we adjust texture using
Maya while keeping lighting, object placement, and camera FOV constant. We conducted two sets of
experiments: one where we vary the texture of 4.1c and the other where we vary texture of 4.1d. Each
test has four sequences with variations of texture (including the original texture sequence given in Section
4.2). Amongst them, two sequences lack textures, whereas the other two have significant texture. To test,
we use forests trained using the following set of features:

xi = { fGM(x, y, [1− 10]), fED(x, y, [1− 10]), fPC(x, y, [1− 4], [1− k]), fSTm(x, y, [1], [1− k]),

fTG,x(x, y, [1− 10]), fTG,y(x, y, [1− 10]), f3
AV(x, y, [1− 4], [1− k]), f3

LV(x, y, [1− 4], [1− k]),

f3
CS,max(x, y, [1− 4], [1− k]), f3

CS,min(x, y, [1− 4], [1− k]), f3
CS,σ2(x, y, [1− 4], [1− k]),

fRC(x, y, [1− 10], [1− k]), fRA(x, y, [1− 10], [1− k]) }

ROC curves computed on the output posteriors for these texture sequences are given in Figure 4.11. Like
before k-fold cross-validation was used for testing. Although in these experiments the testing data included
the new texture sequences. To avoid using data from the same sequence (with or without texture), we
made sure when testing for a sequence, lets say sequence 4.11c, we did not train on its companion textured
sequences i.e. sequence 4.11b, 4.11d, and 4.11e. Hence for testing a sequence, we have 12 sequences to
train on. All other parameters remain the same.

The experiments clearly show that texture plays a key role in such scenarios. The ROC curves
indicate that increasing texture significantly improves performance. This can be largely attributed to
the comparatively better outputs of the flow algorithms. Notice the increase in classification accuracy on
the left side of the vase in Figures 4.11d and 4.11e. Also notice the change in performance around the
vase from Figures 4.11g to 4.11j. Apart from pixels whose texture has changed, there is also decrease
in misclassification on regions whose texture has not changed. The crate and the surface of the vase in
Figures 4.11b to 4.11e are good examples. As additional experiments, it would be interesting to see the
classifier’s output on low textured images when training on just high texture sequences.

Concluding from these experiments, we expect that occlusion regions with less texture are more likely
to be misclassified in our framework as compared to occluded pixels with significant texture.

47

Ahmad Humayun Chapter 4: Evaluation / Experiments

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

FPR (1 − specificity)

T
P

R
 (

se
ns

iti
vi

ty
)

Sequence Fig 4.11b − AUC 0.918
Sequence Fig 4.11c − AUC 0.953
Sequence Fig 4.11d − AUC 0.993
Sequence Fig 4.11e − AUC 0.989

(a)

(b) Original - seq. 4.1c (c) Texture 1 - seq. 4.1c

(d) Texture 2 - seq. 4.1c (e) Texture 3 - seq. 4.1c

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

FPR (1 − specificity)

T
P

R
 (

se
ns

iti
vi

ty
)

Sequence Fig 4.11g − AUC 0.983
Sequence Fig 4.11h − AUC 0.986
Sequence Fig 4.11i − AUC 0.993
Sequence Fig 4.11j − AUC 0.994

(f)

(g) Original - seq. 4.1d (h) Texture 1 - seq. 4.1d

(i) Texture 2 - seq. 4.1d (j) Texture 3 - seq. 4.1d

Figure 4.11: Shows the effect of texture on the classification accuracy. Each ROC plot is produced by
training and testing a classifier on one of the 4 images on its right. The plot’s legend indicates which
curve was produced by which texture sequence. The legend also gives the respective area under the curve
statistic. Seq. 4.11b and Seq. 4.11g are the original images from the training dataset. Seq. 4.11c and Seq.
4.11h are produced with a slightly enhanced texture. Seq. 4.11d/4.11e and Seq. 4.11i/4.11j are produced
by replacing all “no-texture” planes with significant texture. The images on the right are overlayed with
the posterior output using the method explained in Figure 4.6. The lighting, object placement, and
camera FOV were kept constant in both experiments.

48

Chapter 4: Evaluation / Experiments Ahmad Humayun

4.7 Using ground-truth flow

As discussed in Section 3.2.2, a large number of our features depend on optical flow methods. The
performance of these features can only be as good as the performance of the underlying flow algorithms
we use. In this section we experiment with the idea of training and testing with accurate (Ground-Truth)
flow. This will allow us to see how accurate our method (features) can be if a candidate flow algorithm
was flawless.

The training set we have used uptil now (Section 4.2) comes with GT flow where occlusion regions
have been marked. This was an advantage that allowed us to train and test to evaluate our method, but
here it is a drawback since we need to have flow on all pixels to compute the complete set of features. In
lieu of this dataset, we use a different set of 4 training sequences from Baker et al. [1] - where the GT
flow is provided for even occluded pixels. We also add the Yosemite sequence [2] to this new dataset.
Since these sequences provide flow for all pixels, making the occlusion GT becomes a challenge. If the
flow is not large and there is little change in lighting, we can suppose that the intensity of pixels will not
vary much. This is the photo-constancy assumption. Using the flow provided, we can select a threshold
for the photo-constancy feature (fPC) which produces visibly accurate occlusion regions. We use this
technique on these 5 sequences as a starting point to produce the GT occlusion mask. Although this
gives reasonable results it is plagued with the same problems as the photo-constancy feature. To obtain
a better results we manually touch-up the GT using Photoshop. This gives a reasonable occlusion GT
to test our hypothesis. You can see the GT masks produced in Figure 4.12. A better method to create a
dataset for this section would be to create new synthetic sequences which has two ground-truths: one for
flow and one for occlusion.

Using k-fold cross-validation we train and test our random forest, using the set of features finalized
in Section 4.4.1. The results are given in Figure 4.12. For comparison, we also test using the same set of
features, but this time using the 6 candidate flow algorithms. The results look slightly better with these
sequences as compared to results in other sections, partially due to the use of photo-constancy to create
the GT. This is also apparent in the variable importance output by the forest, where fPC is assigned
significantly higher importance than usual. Nevertheless it is clear that using GT flow can increase the
classifier’s accuracy. Notice the errors the classifier makes on Venus, Urban3 and Grove2 using the flow
algorithms. These errors are significantly curtailed when using GT flow.

In conclusion, it would be interesting to see how our framework performs as better flow algorithms are
proposed.

49

Ahmad Humayun Chapter 4: Evaluation / Experiments

Venus [1]

AUC - 0.997

AUC - 0.995

Urban3 [1]

AUC - 0.998

AUC - 0.988

Grove2 [1]

AUC - 0.999

AUC - 0.990

Yosemite [2]

AUC - 1.000

AUC - 0.999

Grove [1]

AUC - 0.997

AUC - 0.922

Figure 4.12: Shows comparative results when using GT flow. The first row in each column shows I1 for
the sequence; the second row shows the GT produced using GT flow; the third row shows the output
posterior when the random forest is trained with features using the GT flow; and the fourth row shows
the posterior when the forest is trained as normal (using the 6 flow algorithms). Below each posterior
output, the area under the ROC curve is given.

50

Chapter 5

Results

Having trained and tested our method on the training dataset, we would like to test our method on
un-seen sequences. To see the classification accuracy and the generalization capability of our classifier, we
use a variety of datasets. In the first Section (5.1) we show quantitative results on sequences where the
occlusion region ground-truth is present (similar to our training set). In Section 5.2 we provide qualitative
comparisons to Stein and Hebert [50], which we think is the current state-of-art in occlusion boundary
detection. In the final Section (5.3) we show qualitative results on popular datasets.

5.1 Results on Sequences with GT

From our original dataset comprising of (see Section 4.2), we removed some sequences for this stage. One
of them is the synthetic robot sequence produced by Mac Aodha et al. [29]. The result on it is given in
two forms in Figure 5.1. This sequence is unique in some ways: there is significant depth in the scene
since it is modeled in a hallway; moreover it has small surfaces which are occluded from one frame to the
next (the panels on the walls). Interestingly the classifier does well on objects nearby, but its accuracy
increases with depth. This coupled with the fact that the robot acts as an occluder to the hallway,
produces relatively weak results around the robot and into the hallway.

The second sequence is a grass-sky also produced by produced by Mac Aodha et al. [29]. Using this
sequence of 11 frames, occlusions are classified between each pair of frames. Since our training sequences,
Mayan 1 (4.1g) and Mayan 2 (4.1h), uses frames from grass-sky, to test this sequence, a new classifier
is created using the remaining 8 sequences as the training set. The classifier performs reasonably well
on all regions except the ground-plane and occasionally on the side of the statues. One can also observe
an interesing case of texture here. The classifier tends to perform weakly next to the statues when the
occluded surface is the background sky - but the same regions adjacent to the statues are classified well
when the occluded surface is the wall.

5.2 Comparative results on Stein and Hebert [50] dataset

We intdroduced the work of Stein and Hebert [50] on detection occlusion boundaries in Section 2.2.1.
As discussed before, they propose a method to classify boundaries in a scene where occlusions occur,
using learned appearance and motion cues. They use sequences with 6 or more frames to make occlusion

51

Ahmad Humayun Chapter 5: Results

boundary predictions on the center pair of images in the sequence. In this section we compare our results
to their method on the dataset they provide. Although not an apples to apples comparison, it is worth
looking if our occlusion regions have any correlation with the occlusion boundary ground-truth provided
and their results on detecting occlusion boundary fragments.

The classifier as before was trained using the dataset given in Section 4.2 and the features finalized in
Section 4.4.1. Although we tested our classifier on all 30 sequences provided in this dataset, we display

(a) Robot I1 [29] overlayed with output - AUC 0.917 (b) Robot posterior

(c) Grass-sky [29] I1 -
AUC 0.950

(d) Grass-sky I2 -
AUC 0.977

(e) Grass-sky I3 -
AUC 0.965

(f) Grass-sky I4 -
AUC 0.972

(g) Grass-sky I5 -
AUC 0.965

(h) Grass-sky I6 -
AUC 0.959

(i) Grass-sky I7 - AUC
0.955

(j) Grass-sky I8 - AUC
0.961

(k) Grass-sky I9 -
AUC 0.938

(l) Grass-sky I10 -
AUC 0.985

Figure 5.1: Shows the GT evaluation using two sets of sequences, both taken from Mac Aodha et al. [29].
The first row shows results with the robot sequence. Images in this figure are overlayed with the posterior
output using the method explained in Figure 4.6, except Figure 5.1b, which is the direct posterior output
of the classifier. The second row and third row gives results on the 10 frame grass-sky sequence. All
area under the curve of ROC are given in captions.

52

Chapter 5: Results Ahmad Humayun

Imid + GT object Fragment GT Stein and Hebert [50] Occlusion Posterior

Mugs

Rocking
Horse

Squirrel 2

Squirrel 4

Walking
Legs

Table 5.1: Comparative results against the occlusion boundary GT and results provided by Stein and
Hebert [50]. The first column of images shows the middle frame on which [50] computes occlusion
boundaries. The frame is overlayed in red with the GT object layer boundaries. The second column
shows the boundary fragment GT created using the segmentation method discussed in Section 2.2.1 and
fragment chaining. Stein and Hebert [50] use this GT for training their classifier. Their results are given
in the third column. Note all GT was is provided by Stein and Hebert [50]. The last column shows
our results where color ranges from green (low occlusion region probability) to yellow (high probability).

results here for 12 chosen sequence, where in some the classifier seems to be performing qualitatively well,
and in others the posterior output is quite noisy.

Notice the classifier’s ability on the Rocking Horse and Walking Legs sequence in Table 5.1. The
classifier scores very highly on regions where the rocking horse or the legs are moving over to. Also note
the results on the Squirrel 2 sequence where the major movement is on the squirrel’s tail and hands.

53

Ahmad Humayun Chapter 5: Results

Imid + GT object Fragment GT Stein and Hebert [50] Occlusion Posterior

Bench

Car

Chair 1

CMU
Sign

Fence
Post

Hand 3

Linus 1

Table 5.2: See Table 5.1 for the description.
54

Chapter 5: Results Ahmad Humayun

On the other hand, notice the relatively poor performance on the mug sequence. This is due to the
significantly difficult texture of the occluded surface. Interestingly, this where Stein and Hebert [50]
method also performs badly. Although, the surface of occluding mug handle itself is marked with a low
occlusion probability, whereas the former method performs poorly on all areas close to the texture.

For sequences in Table 5.2, the Hand 3 sequence seems to perform the best. This could be due to the
strong contrast of the hand against the occluded pillow. As we have seen before, our method tends to
perform badly wherever lighting changes occur. The Fence Post sequence is no exception, as the classifier
only shows small discriminative ability on the fence post. For the former sequence and Chair 1, it would
be interesting to analyze if the optical flow algorithms are breaking down, or the features themselves are
to be blamed. Notice also the CMU Sign sequence, where the lettering on the board is also being classified
as occlusion regions. This could be due to the specularities on this sign board.

The GT and results of Stein and Hebert [50] can be accessed from http://www.cs.cmu.edu/~stein/

occlusion_data/.

(a) Urban2 [1] I1 (b) Grove3 [1] I1 (c) Forest [68] I1 (d) Cones [44] I1 (e) Teddy [44] I1

(f) Urban2 posterior (g) Grove3 posterior (h) Forest posterior (i) Cones posterior (j) Teddy posterior

Figure 5.2: Shows results on evaluation sequences which have no GT. Sequences have been taken from
Baker et al. [1], Zitnick et al. [68], and Scharstein and Szeliski [44]. The first row shows the input image
I1 of the sequence. The second row gives results on the respective sequences. Lighter values indicate a
higher posterior probability.

55

http://www.cs.cmu.edu/~stein/occlusion_data/
http://www.cs.cmu.edu/~stein/occlusion_data/

Ahmad Humayun Chapter 5: Results

5.3 Results on Sequences with no GT

As last set of tests, we use datasets which are popular in the vision community. This includes some un-
tested sequences from the middlebury stereo dataset [44], and the middlebury flow dataset [1]. In these
sequences, we also include the forest sequence from [68], which is a considerably hard to classify due to
large varying texture and significant camera motion. Nevertheless our method seems to resolve the right
side of the trunk in the sequence (see Figure 5.2h).

We also test our method on the rotating table sequence from the MIT human annotated dataset [27].
The results on the 13 frame sequence can be seen in Figure 5.3. Notice the effect of specular reflection in
Figures 5.3u, and 5.3w. Also note the classification of the left-side of the jar as we mover over the sequence.
Also the disappearing left-face of the blue box makes an interesting case for occlusion classification.

56

Chapter 5: Results Ahmad Humayun

(a) I1 (b) I1 posterior (c) I2 (d) I2 posterior

(e) I3 (f) I3 posterior (g) I4 (h) I4 posterior

(i) I5 (j) I5 posterior (k) I6 (l) I6 posterior

(m) I7 (n) I7 posterior (o) I8 (p) I8 posterior

(q) I9 (r) I9 posterior (s) I10 (t) I10 posterior

(u) I11 (v) I11 posterior (w) I12 (x) I12 posterior

Figure 5.3: Classification results on table sequence from Liu et al. [27].

57

Chapter 6

Conclusions and Future Work

This thesis proposes combining multiple low level visual features in a framework to classify regions of
occlusion. As discussed in the introduction, occlusions pose significant hurdles in the computation of
flow, motion segmentation and even stereo. Finding these regions is critical to good performance in all
such techniques. Despite the importance of detecting occlusions, there has been no standard procedure
to classify such pixels reliably.

This thesis proposed an algorithm which learns regions of occlusions. Our major contribution was
the set of features correlated with occlusion regions and the accompanying framework to classify pixels.
Although the method proposed provided good classification ability using our features, the framework is
open-ended to accept new features sets.

We have based a majority of our features on optical flow, since without any temporal reasoning over the
image sequence there is no concept of occlusions. Some features in our set work purely on flow whereas
others take image properties into consideration. We also compute features using flows from different
candidate algorithms which reduces chances of the classifier being biased by the faults of a particular flow
algorithm.

The results overall are promising when compared to the current state-of-art algorithms. This demon-
strates that combining features in a classification framework can correctly identify occlusions in some
cases. However, as discussed in the next section, some problems in the classifier still remain unanswered.

6.1 Future Work

One drawback we observed with our framework during testing was the decrease in performance while
working with sequences undergoing large change in field-of-view. We concluded that this was mostly due
to the lack of features having any understanding of the scene geometry. It should be possible improve
the accuracy of our classifier by incorporating features from stereo algorithms. Since we would not want
such features to hurt our classifier’s performance during small baseline camera movements, it might be
feasible to weight such features by the amount of camera movement (a simple 8-point algorithm might
work here).

We also noticed that our classifier’s performance was unpredictable on areas of high texture or on
texture-less surfaces. It might be of interest to find better perform texture features. To this end, we tried
both Gabor and A Sparse Set of Texture Features. Although they perform reasonably, there is still an
opportunity for improvement.

58

Chapter 6: Conclusions and Future Work Ahmad Humayun

Another concern with our algorithm could be speed. Although the trained classifier just takes around
90 seconds per sequence, another 30 minutes are required to compute the whole feature set. Here decreas-
ing the size of the feature set can have dual advantages. Apart from the decrease in the computation cost
for these features, the size of the classifier will also help reduce the 90 seconds taken to test the data (note
that a majority of this time is consumed in loading the classifier into memory).

59

Ahmad Humayun Chapter : Conclusions and Future Work

.1 Code Appendix

Listing 1: AbstractFeature class

1 c l a s s d e f AbstractFeature
2 %ABSTRACTFEATURE Abs t r a c t c l a s s f o r computing a f e a t u r e
3

4 p r o p e r t i e s (Abstract , Constant)
5 FEATURE TYPE;
6 FEATURE SHORT TYPE;
7 end
8

9

10 methods (Abstract)
11 [grad f ea tu r e dep th] = ca l cFea tu r e s (obj , c a l c f e a t u r e v e c) ;
12 end
13

14

15 methods
16 function f e a t u r e n o i d = returnNoID (obj)
17 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
18 % name
19

20 % c r e a t e un ique ID
21 nos = uint8 (obj .FEATURE SHORT TYPE) ;
22 nos = double (nos) .∗ ([1 : length (nos)] . ˆ 2) ;
23 f e a t u r e n o i d = sum(nos) ;
24 end
25

26

27 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
28 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
29 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
30

31 r e t u r n f e a t u r e l i s t {1} = { obj .FEATURE TYPE, ’ no s c a l i n g ’ } ;
32 end
33 end
34

35 end

Listing 2: EdgeDistFeature class

1 c l a s s d e f EdgeDistFeature < AbstractFeature
2 %EDGEDISTFEATURE the d i s t a n c e t r an s f r om from the edges i n the f i r s t

60

Chapter : Conclusions and Future Work Ahmad Humayun

3 % image (u s i n g canny edge d e t e c t o r) . The c o n s t r u c t o r e i t h e r t a k e s
4 % noth ing or s i z e 2 v e c t o r f o r computing the f e a t u r e on s c a l e s p a c e
5 % (f i r s t v a l u e : number o f s c a l e s , second va l u e : r e s i z i n g f a c t o r) . I f
6 % us i ng s c a l e s p a c e , ComputeFeatureVectors o b j e c t pas sed to
7 % ca l c F e a t u r e s shou l d have im1 s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e) ,
8 % apa r t from image sz . image sz and im1 gray a r e r e q u i r e d f o r
9 % computing t h i s f e a t u r e w i thout s c a l e s p a c e . . I f u s i n g the

10 % sca l e s p a c e , u s u a l l y , the output f e a t u r e s go up i n the s c a l e s p a c e
11 % (i n c r e a s i n g g au s s i a n std−dev) w i th i n c r e a s i n g depth .
12

13

14 p r o p e r t i e s
15 n o s c a l e s = 1 ;
16 s c a l e = 1 ;
17 end
18

19

20 p r o p e r t i e s (Constant)
21 FEATURE TYPE = ’ Edge Distance ’ ;
22 FEATURE SHORT TYPE = ’ED’ ;
23 end
24

25

26 methods
27 function obj = EdgeDistFeature (vararg in)
28 i f nargin > 0 && i s v e c t o r (vararg in {1}) && length (vararg in {1}) ==

2
29 obj . n o s c a l e s = vararg in {1} (1) ;
30 obj . s c a l e = vararg in {1} (2) ;
31 end
32 end
33

34

35 function [d i s t f e a tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

36 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
37 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
38 % c l a s s) . The s i z e o f d i s t i s the same as the i npu t image , w i th a
39 % depth e q u i v a l e n t to the number o f s c a l e s
40

41 i f obj . n o s c a l e s > 1
42 a s s e r t (˜ isempty (f i e l d s (c a l c f e a t u r e v e c . im1 sca l e space)) , ’

The s c a l e space f o r im 1 has not been de f ined in the
passed ComputeFeatureVectors ’) ;

43

44 a s s e r t (c a l c f e a t u r e v e c . im1 sca l e space . s c a l e == obj . s c a l e &&

61

Ahmad Humayun Chapter : Conclusions and Future Work

. . .
45 c a l c f e a t u r e v e c . im1 sca l e space . n o s c a l e s >= obj .

n o s c a l e s , ’The s c a l e space g iven f o r im 1 in
ComputeFeatureVectors i s incompat ib le ’) ;

46

47 % i n i t i a l i z e the output f e a t u r e
48 d i s t = zeros (c a l c f e a t u r e v e c . image sz (1) , c a l c f e a t u r e v e c .

image sz (2) , obj . n o s c a l e s) ;
49

50 % i t e r a t e f o r mu l t i p l e s c a l e s
51 for s c a l e i d x = 1 : obj . n o s c a l e s
52 % get the next f l ow image i n the s c a l e space
53 i m r e s i z e d = c a l c f e a t u r e v e c . im1 sca l e space . s s {

s c a l e i d x } ;
54

55 % compute the edge image
56 edge im = edge (im re s i z ed , ’ canny ’) ;
57

58 % compute d i s t a n c e t r an s f o rm and r e s i z e i t to the
o r i g i n a l image s i z e

59 d i s t (: , : , s c a l e i d x) = i m r e s i z e (bwdist (edge im) ,
c a l c f e a t u r e v e c . image sz) ;

60 end
61 else
62 % compute the edge image
63 edge im = edge (c a l c f e a t u r e v e c . im1 gray , ’ canny ’) ;
64

65 % compute d i s t a n c e t r an s f o rm and r e s i z e i t to the o r i g i n a l
image s i z e

66 d i s t = i m r e s i z e (bwdist (edge im) , c a l c f e a t u r e v e c . image sz) ;
67 end
68

69 f e a tu r e dep th = s ize (d i s t , 3) ;
70 end
71

72

73 function f e a t u r e n o i d = returnNoID (obj)
74 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
75 % name
76

77 % c r e a t e un ique ID
78 nos = returnNoID@AbstractFeature (obj) ;
79

80 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
81 % get f i r s t 2 dec ima l d i g i t s
82 temp = mod(round(temp∗100) , 100) ;

62

Chapter : Conclusions and Future Work Ahmad Humayun

83 f e a t u r e n o i d = (nos ∗100) + temp ;
84 end
85

86

87 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
88 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
89 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
90

91 r e t u r n f e a t u r e l i s t = c e l l (obj . no s c a l e s , 1) ;
92

93 r e t u r n f e a t u r e l i s t {1} = { obj .FEATURE TYPE, ’ no s c a l i n g ’ } ;
94

95 for s c a l e i d = 2 : obj . n o s c a l e s
96 r e t u r n f e a t u r e l i s t { s c a l e i d } = { obj .FEATURE TYPE, [’ s c a l e ’

num2str(s c a l e i d)] , [’ s i z e ’ sprintf (’ %.1 f%%’ , (obj .
s c a l e ˆ(s c a l e i d −1)) ∗100)] } ;

97 end
98 end
99 end

100

101 end

Listing 3: OFAngleVarianceFeature class

1 c l a s s d e f OFAngleVarianceFeature < AbstractFeature
2 %OFANGLEVARIANCEFEATURE computes the v a r i a n c e o f the f l ow v e c t o r a n g l e s
3 % in a sma l l window (d e f i n e d by nhood) around each p i x e l . The
4 % con s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which w i l l be used
5 % f o r computing t h i s f e a t u r e . Second argument i s o f the nhood (a 5x5
6 % window [c r] = meshgr id (−2:2 , −2:2) ; nhood = cat (3 , r (:) , c (:)) ;) .
7 % The c o n s t r u c t o r a l s o o p t i o n a l l y t a k e s a s i z e 2 v e c t o r f o r computing
8 % the f e a t u r e on s c a l e s p a c e (f i r s t v a l u e : number o f s c a l e s , second
9 % va l u e : r e s i z i n g f a c t o r) . I f u s i n g s c a l e s p a c e , ComputeFeatureVectors

10 % ob j e c t pas sed to c a l c F e a t u r e s shou l d have
11 % e x t r a i n f o . f l o w s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e) , apa r t from
12 % image sz . Note tha t i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e
13 % enough number o f s c a l e s i n a l l s c a l e s p a c e s t r u c t u r e . I f not
14 % us i ng s c a l e s p a c e , e x t r a i n f o . c a l c f l o w s . u v f l ow s i s r e q u i r e d f o r
15 % computing t h i s f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the
16 % output f e a t u r e s go up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n
17 % std−dev) w i th i n c r e a s i n g depth .
18 %
19 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th t h e i r
20 % r e s p e c t i v e s c a l e
21

63

Ahmad Humayun Chapter : Conclusions and Future Work

22

23 p r o p e r t i e s
24 n o s c a l e s = 1 ;
25 s c a l e = 1 ;
26 nhood ;
27

28 f l o w i d s = [] ;
29 f l o w s h o r t t y p e s = {} ;
30 end
31

32

33 p r o p e r t i e s (Constant)
34 FEATURE TYPE = ’ Angle Variance ’ ;
35 FEATURE SHORT TYPE = ’AV’ ;
36 end
37

38

39 methods
40 function obj = OFAngleVarianceFeature (c e l l f l o w s , nhood , vararg in)
41 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;
42

43 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
44 for a l g o i d x = 1 : length (c e l l f l o w s)
45 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
46 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
47 end
48

49 % ne ighborhood window p ro v i d ed by u s e r
50 obj . nhood = nhood ;
51

52 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
53 i f nargin > 2 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2
54 obj . n o s c a l e s = vararg in {1} (1) ;
55 obj . s c a l e = vararg in {1} (2) ;
56 end
57 end
58

59

60 function [angvar f ea tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

61 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
62 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
63 % c l a s s) . The s i z e o f angvar i s the same as the i npu t image ,

64

Chapter : Conclusions and Future Work Ahmad Humayun

64 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
65 % number o f s c a l e s
66

67 % f i n d which a l g o s to use
68 a l g o s t o u s e = c e l l f u n (@(x) find (strcmp (x , c a l c f e a t u r e v e c .

e x t r a i n f o . c a l c f l o w s . a l g o i d s)) , obj . f l o w s h o r t t y p e s) ;
69

70 a s s e r t (length (a l g o s t o u s e)==length (obj . f l o w s h o r t t y p e s) , [’Can
’ ’ t f i n d matching f low algor i thm (s) used in computation o f ’
c l a s s (obj)]) ;

71

72 i f obj . n o s c a l e s > 1
73 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e

’) && . . .
74 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e)) , . . .
75 ’The s c a l e space f o r UV f low has not been de f ined in the

passed ComputeFeatureVectors ’) ;
76

77 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

78 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s , . . .

79 ’The s c a l e space g iven f o r UV f low in
ComputeFeatureVectors i s incompat ib le ’) ;

80

81 % get the number o f f l ow a l g o r i t hm s
82 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
83

84 % i n i t i a l i z e the output f e a t u r e
85 angvar = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

86

87 % i t e r a t e f o r mu l t i p l e s c a l e s
88 for s c a l e i d x = 1 : obj . n o s c a l e s
89

90 image sz = s ize (c a l c f e a t u r e v e c . e x t r a i n f o .
f l o w s c a l e s p a c e . s s { s c a l e i d x }) ;

91 image sz = image sz ([1 2]) ;
92

93 % compute ang l e v a r i a n c e f o r each o p t i c a l f l ow g i v en
94 angvar temp = obj . computeAngVarForEachUV (

c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s s {
s c a l e i d x } (: , : , : , a l g o s t o u s e) , image sz) ;

95

65

Ahmad Humayun Chapter : Conclusions and Future Work

96 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
97 for f e a t i d x = 1 : s ize (angvar temp , 3)
98 % r e s i z e and s t o r e
99 angvar (: , : , ((f e a t i d x −1)∗ obj . n o s c a l e s)+s c a l e i d x) =

i m r e s i z e (angvar temp (: , : , f e a t i d x) ,
c a l c f e a t u r e v e c . image sz) ;

100 end
101 end
102 else
103 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

104

105 % compute ang l e v a r i a n c e f o r each o p t i c a l f l ow g i v en
106 angvar = obj . computeAngVarForEachUV (c a l c f e a t u r e v e c .

e x t r a i n f o . c a l c f l o w s . uv f l ows (: , : , : , a l g o s t o u s e) ,
c a l c f e a t u r e v e c . image sz) ;

107 end
108

109 f e a tu r e dep th = s ize (angvar , 3) ;
110 end
111

112

113 function f e a t u r e n o i d = returnNoID (obj)
114 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
115 % name
116

117 % c r e a t e un ique ID
118 nos = returnNoID@AbstractFeature (obj) ;
119

120 temp = (obj . n o s c a l e s ˆ obj . s c a l e) ∗numel (obj . nhood) ;
121 % get f i r s t 2 dec ima l d i g i t s
122 temp = mod(round(temp∗100) , 100) ;
123 f e a t u r e n o i d = (nos ∗100) + temp ;
124

125 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
126 end
127

128

129 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
130 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
131 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
132

133 window size = num2str(max((max(obj . nhood , [] , 1) − min(obj . nhood
, [] , 1)) +1)) ;

134 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .

66

Chapter : Conclusions and Future Work Ahmad Humayun

f l o w s h o r t t y p e s) , 1) ;
135

136 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
137 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
138

139 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , [’ window s i z e ’
window size] , ’ no s c a l i n g ’ } ;

140

141 for s c a l e i d = 2 : obj . n o s c a l e s
142 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ window s i z e ’ window size] , [’ s c a l e ’ num2str(
s c a l e i d)] , [’ s i z e ’ sprintf (’ %.1 f%%’ , (obj . s c a l e ˆ(
s c a l e i d −1)) ∗100)] } ;

143 end
144 end
145 end
146 end
147

148

149 methods (Access = p r i v a t e)
150 function [angvar] = computeAngVarForEachUV (obj , uv f lows ,

image sz)
151

152 n o f l o w a l g o s = s ize (uv f lows , 4) ;
153

154 % i n i t i a l i z e the output f e a t u r e
155 angvar = zeros (image sz (1) , image sz (2) , n o f l o w a l g o s) ;
156

157 % get the nhood r and c ’ s (each c o l g i v en a ne ighborhood
158 % around a p i x e l − nhood r i s row ind , nhood c i s c o l i nd)
159 [c o l s rows] = meshgrid (1 : image sz (2) , 1 : image sz (1)) ;
160 nhood rep = repmat (obj . nhood , [1 numel (rows) 1]) ;
161 nhood r = nhood rep (: , : , 1) + repmat (rows (:) ’ , [s ize (obj . nhood , 1)

1]) ;
162 nhood c = nhood rep (: , : , 2) + repmat (c o l s (:) ’ , [s ize (obj . nhood , 1)

1]) ;
163

164 % get the p i x e l i n d i c e s which a r e o u t s i d e
165 i d x s o u t s i d e = nhood r <= 0 | nhood c <= 0 | nhood r > image sz

(1) | nhood c > image sz (2) ;
166

167 % f i n d how many nhood p i x e l s a r e o u t s i d e f o r each p i x e l
168 sums outs ide = sum(i d x s o u t s i d e , 1) ;
169

67

Ahmad Humayun Chapter : Conclusions and Future Work

170 % f i n d the un ique no . o f nhood p i x e l s o u t s i d e (w i l l i t e r a t e
171 % ove r t h e s e no . s)
172 unique sums = unique (sums outs ide) ;
173

174

175 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
176 for a l g o i d x = 1 : n o f l o w a l g o s
177

178 % get the f l ow f o r t h i s c and i d a t e a l g o r i t hm
179 x f l = uv f l ows (: , : , 1 , a l g o i d x) ;
180 y f l = uv f l ows (: , : , 2 , a l g o i d x) ;
181

182 % i n i t i a l i z e the f e a t u r e to r e t u r n
183 f e a t u r e s = zeros (numel (x f l) , 1) ;
184

185 % i t e r a t e ove r a l l un ique no . o f p i x e l s o u t s i d e
186 for s = unique sums
187 % get the p i x e l s which f a l l i n t h i s c a t e go r y
188 c u r r i d x s = sums outs ide==s ;
189

190 % get rows and c o l s f o r f o r t h e s e v a l i d p i x e l s
191 temp r = nhood r (: , c u r r i d x s) ;
192 temp c = nhood c (: , c u r r i d x s) ;
193

194 % throw away i n d i c e s which f a l l o u t s i d e (f i x temp r
195 % and temp c)
196 i f s ˜= 0
197 % s e l e c t the p i x e l (nhoods) which have t h i s no . o f

nhood p i x e l s o u t s i d e
198 t emp idxs out s ide = i d x s o u t s i d e (: , c u r r i d x s) ;
199

200 % so r t and d e l e t e the nhood p i x e l s which a r e o u t s i d e
201 [temp , r e m a i n i n g i d x s r s] = sort (t emp idxs outs ide ,

1) ;
202 r e m a i n i n g i d x s r s (end−s +1:end , :) = [] ;
203

204 % ad j u s t temp r and temp c wi th the i n d x s found
which a r e not o u t s i d e the image

205 r e m a i n i n g i d x s r s = sub2ind (s ize (temp r) ,
r ema in ing idx s r s , repmat (1 : s ize (temp c , 2) , [
s ize (r ema in ing idx s r s , 1) 1])) ;

206 temp r = temp r (r e m a i n i n g i d x s r s) ;
207 temp c = temp c (r e m a i n i n g i d x s r s) ;
208 end
209

210 % get the i n d x s f o r each p i x e l nhood

68

Chapter : Conclusions and Future Work Ahmad Humayun

211 temp indxs = sub2ind (s ize (x f l) , temp r , temp c) ;
212 temp u = x f l (temp indxs) ;
213 temp v = y f l (temp indxs) ;
214

215

216 %%% The main f e a t u r e computat ion
217 ang = atan (temp v . / temp u) ;
218 avg ang = anglesUnwrappedMean (ang , ’ rad ’ , 1) ;
219 avg ang = repmat (avg ang , [s ize (ang , 1) 1]) ;
220 avg ang = anglesUnwrappedDiff (ang , avg ang) ;
221

222 % ang l e v a r i a n c e
223 avg ang = mean(avg ang . ˆ 2 , 1) ;
224 f e a t u r e s (cu r r i dx s , 1) = avg ang ;
225 end
226

227 % s t o r e
228 angvar (: , : , a l g o i d x) = reshape (f e a tu r e s , image sz) ;
229 end
230 end
231 end
232

233 end

Listing 4: OFCollidingSpeedFeature class

1 c l a s s d e f OFColl idingSpeedFeature < AbstractFeature
2 %OFCOLLIDINGSPEEDEFEATURE computes the speed o f c o l l i s i o n g i v en the
3 % f low v e c t o r s o f d i a g o n a l l y o ppo s i t e p i x e l s i n a l e n g t h s i n a sma l l
4 % window (d e f i n e d by nhood) around each p i x e l . Th i s c l a s s computes
5 % summary s t a t i s t i c s o f the d i f f e r e n t c o l l i s i o n speeds i n a c e r t a i n
6 % p i x e l nhood . The c o n s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s
7 % which w i l l be used f o r computing t h i s f e a t u r e . Second argument i s
8 % of the nhood (a 5x5 window [c r] = meshgr id (−2:2 , −2:2) ;
9 % nhood = cat (3 , r (:) , c (:)) ;

10 % nhood cs (nhood cs (: , : , 1)==0 & nhood cs (: , : , 2) ==0 , : , :) = [] ;) .
11 % The c o n s t r u c t o r a l s o o p t i o n a l l y t a k e s a s i z e 2 v e c t o r f o r computing
12 % the f e a t u r e on s c a l e s p a c e (f i r s t v a l u e : number o f s c a l e s , second
13 % va l u e : r e s i z i n g f a c t o r) . I f u s i n g s c a l e s p a c e , ComputeFeatureVectors
14 % ob j e c t pas sed to c a l c F e a t u r e s shou l d have
15 % e x t r a i n f o . f l o w s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e) , apa r t from
16 % image sz . Note tha t i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e
17 % enough number o f s c a l e s i n a l l s c a l e s p a c e s t r u c t u r e . I f not
18 % us i ng s c a l e s p a c e , e x t r a i n f o . c a l c f l o w s . u v f l ow s i s r e q u i r e d f o r
19 % computing t h i s f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the

69

Ahmad Humayun Chapter : Conclusions and Future Work

20 % output f e a t u r e s go up i n the s c a l e s p a c e (i n c r e a s i n g gau s s i a n
21 % std−dev) w i th i n c r e a s i n g depth .
22 %
23 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th max /
24 % min / va r f e a t u r e s and then by t h e i r r e s p e c t i v e s c a l e
25

26

27 p r o p e r t i e s
28 n o s c a l e s = 1 ;
29 s c a l e = 1 ;
30 nhood 1 ;
31 nhood 2 ;
32

33 f l o w i d s = [] ;
34 f l o w s h o r t t y p e s = {} ;
35 end
36

37

38 p r o p e r t i e s (Trans ient)
39 p i n v d i s t u ;
40 p i n v d i s t v ;
41 pro j a1 ;
42 pro j a2 ;
43 pro j a3 ;
44 pro j a4 ;
45 end
46

47

48 p r o p e r t i e s (Constant)
49 FEATURE TYPE = ’ C o l l i d i n g Speed ’ ;
50 FEATURE SHORT TYPE = ’CS ’ ;
51

52 FEATURES PER PIXEL = 3 ;
53 FEATURES PER PIXEL TYPES = { ’MAX’ , ’MIN ’ , ’VAR’ } ;
54 end
55

56

57 methods
58 function obj = OFColl idingSpeedFeature (c e l l f l o w s , nhood , vararg in

)
59 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;
60

61 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
62 for a l g o i d x = 1 : length (c e l l f l o w s)
63 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

70

Chapter : Conclusions and Future Work Ahmad Humayun

OF SHORT TYPE;
64 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
65 end
66

67 % ne ighborhood window p ro v i d ed by u s e r
68 a s s e r t (mod(sqrt (s ize (nhood , 1) +1) , 1) == 0 , ’The number o f nhood

p i x e l s can be only (Zˆ2)−1 ’) ;
69 obj . nhood 1 = nhood (1 : s ize (nhood , 1) / 2 , : , :) ;
70 obj . nhood 2 = nhood (end :−1:(s ize (nhood , 1) /2) + 1 , : , :) ;
71

72 % i n i t i a l i z e the o th e r t r a n s i e n t i n f o r e q u i r e d to compute t h i s
f e a t u r e

73 obj = obj . e x t r a I n f o () ;
74

75 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
76 i f nargin > 2 && i s v e c t o r (vararg in {1}) && length (vararg in {1}) ==

2
77 obj . n o s c a l e s = vararg in {1} (1) ;
78 obj . s c a l e = vararg in {1} (2) ;
79 end
80 end
81

82

83 function [co l spd f ea tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

84 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
85 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
86 % c l a s s) . The s i z e o f c o l s pd i s the same as the i npu t image ,
87 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
88 % f e a t u r e s pe r p i x e l t imes the number o f s c a l e s
89

90 % f i n d which a l g o s to use
91 a l g o s t o u s e = c e l l f u n (@(x) find (strcmp (x , c a l c f e a t u r e v e c .

e x t r a i n f o . c a l c f l o w s . a l g o i d s)) , obj . f l o w s h o r t t y p e s) ;
92

93 a s s e r t (length (a l g o s t o u s e)==length (obj . f l o w s h o r t t y p e s) , [’Can
’ ’ t f i n d matching f low algor i thm (s) used in computation o f ’
c l a s s (obj)]) ;

94

95 i f obj . n o s c a l e s > 1
96 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e

’) && . . .
97 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e)) , . . .
98 ’The s c a l e space f o r UV f low has not been de f ined in the

passed ComputeFeatureVectors ’) ;

71

Ahmad Humayun Chapter : Conclusions and Future Work

99

100 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

101 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s , . . .

102 ’The s c a l e space g iven f o r UV f low in
ComputeFeatureVectors i s incompat ib le ’) ;

103

104 % get the number o f f l ow a l g o r i t hm s
105 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
106

107 % i n i t i a l i z e the output f e a t u r e
108 co l spd = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
FEATURES PER PIXEL∗ obj . n o s c a l e s) ;

109

110 % i t e r a t e f o r mu l t i p l e s c a l e s
111 for s c a l e i d x = 1 : obj . n o s c a l e s
112

113 image sz = s ize (c a l c f e a t u r e v e c . e x t r a i n f o .
f l o w s c a l e s p a c e . s s { s c a l e i d x }) ;

114 image sz = image sz ([1 2]) ;
115

116 % compute d i a g o n a l l y o ppo s i t e p i x e l ’ s c o l l i d i n g speed
f o r each o p t i c a l f l ow g i v en

117 colspd temp = obj . computeCollidingSpeedForEachUV (
c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s s {
s c a l e i d x } (: , : , : , a l g o s t o u s e) , image sz) ;

118

119 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
120 for f e a t i d x = 1 : s ize (colspd temp , 3)
121 % r e s i z e and s t o r e
122 co l spd (: , : , ((f e a t i d x −1)∗ obj . n o s c a l e s)+s c a l e i d x) =

i m r e s i z e (colspd temp (: , : , f e a t i d x) ,
c a l c f e a t u r e v e c . image sz) ;

123 end
124 end
125 else
126 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

127

128 % compute d i a g o n a l l y o ppo s i t e p i x e l ’ s c o l l i d i n g speed f o r
each o p t i c a l f l ow g i v en

129 co l spd = obj . computeCollidingSpeedForEachUV (
c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . uv f l ows (: , : , : ,

72

Chapter : Conclusions and Future Work Ahmad Humayun

a l g o s t o u s e) , c a l c f e a t u r e v e c . image sz) ;
130 end
131

132 f e a tu r e dep th = s ize (colspd , 3) ;
133 end
134

135

136 function f e a t u r e n o i d = returnNoID (obj)
137 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
138 % name
139

140 % c r e a t e un ique ID
141 nos = returnNoID@AbstractFeature (obj) ;
142

143 temp = (obj . n o s c a l e s ˆ obj . s c a l e) ∗numel (obj . nhood 1) ;
144 % get f i r s t 2 dec ima l d i g i t s
145 temp = mod(round(temp∗100) , 100) ;
146 f e a t u r e n o i d = (nos ∗100) + temp ;
147

148 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
149

150 for f t r i d x = 1 : length (obj .FEATURES PER PIXEL TYPES)
151 nos = uint8 (obj .FEATURES PER PIXEL TYPES{ f t r i d x }) ;
152 nos = double (nos) .∗ ([1 : length (nos)] . ˆ 2) ;
153 f e a t u r e n o i d = f e a t u r e n o i d + sum(nos) ;
154 end
155 end
156

157

158 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
159 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
160 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
161

162 window size = num2str(max((max(obj . nhood 2 , [] , 1) − min(obj .
nhood 1 , [] , 1)) +1)) ;

163 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ obj .
FEATURES PER PIXEL ∗ length (obj . f l o w s h o r t t y p e s) , 1) ;

164

165 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
166 for f e a t u r e i d = 1 : obj .FEATURES PER PIXEL
167 s t a r t i n g n o = ((f l ow id −1)∗ obj . n o s c a l e s ∗ obj .

FEATURES PER PIXEL) + ((f e a t u r e i d −1)∗ obj . n o s c a l e s)
;

168

169 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE
’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , . . .

73

Ahmad Humayun Chapter : Conclusions and Future Work

170 [obj .
FEATURES PER PIXEL TYPES
{ f e a t u r e i d } ’

f e a t u r e ’] ,
. . .

171 [’ window s i z e ’
window size] ,
’ no s c a l i n g ’ } ;

172

173 for s c a l e i d = 2 : obj . n o s c a l e s
174 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s {
f l o w i d }] , . . .

175 [obj .
FEATURES PER PIXEL TYPES
{
f e a t u r e i d
} ’

f e a t u r e
’] ,

. . .
176 [’

window

s i z e
’

window size
] ,
[’
s c a l e

’
num2str(
s c a l e i d
)] ,

. . .
177 [’ s i z e

’
sprintf (
’
%.1
f%%
’ ,
(

74

Chapter : Conclusions and Future Work Ahmad Humayun

obj
.
s c a l e
ˆ(
s c a l e i d
−1)
)
∗100)
] } ;

178 end
179 end
180 end
181 end
182 end
183

184

185 methods (Access = p r i v a t e)
186 function [co l spd] = computeCollidingSpeedForEachUV (obj , uv f lows ,

image sz)
187

188 n o f l o w a l g o s = s ize (uv f lows , 4) ;
189

190 % i n i t i a l i z e the output f e a t u r e
191 co l spd = zeros (image sz (1) , image sz (2) , n o f l o w a l g o s ∗ obj .

FEATURES PER PIXEL) ;
192

193 % get the nhood r and c ’ s (each c o l g i v en a ne ighborhood
194 % around a p i x e l − nhood r i s row ind , nhood c i s c o l i nd)
195 [c o l s rows] = meshgrid (1 : image sz (2) , 1 : image sz (1)) ;
196 nhood rep 1 = repmat (obj . nhood 1 , [1 numel (rows) 1]) ;
197 nhood rep 2 = repmat (obj . nhood 2 , [1 numel (rows) 1]) ;
198 nhood r 1 = nhood rep 1 (: , : , 1) + repmat (rows (:) ’ , [s ize (obj .

nhood 1 , 1) 1]) ;
199 nhood c 1 = nhood rep 1 (: , : , 2) + repmat (c o l s (:) ’ , [s ize (obj .

nhood 1 , 1) 1]) ;
200 nhood r 2 = nhood rep 2 (: , : , 1) + repmat (rows (:) ’ , [s ize (obj .

nhood 2 , 1) 1]) ;
201 nhood c 2 = nhood rep 2 (: , : , 2) + repmat (c o l s (:) ’ , [s ize (obj .

nhood 2 , 1) 1]) ;
202

203 % get the p i x e l i n d i c e s which a r e o u t s i d e
204 i d x s o u t s i d e = nhood r 1 <= 0 | nhood c 1 <= 0 | nhood r 1 >

image sz (1) | nhood c 1 > image sz (2) . . .
205 | nhood r 2 <= 0 | nhood c 2 <= 0 | nhood r 2 > image sz (1)

| nhood c 2 > image sz (2) ;
206

75

Ahmad Humayun Chapter : Conclusions and Future Work

207 % f i n d how many nhood p i x e l s a r e o u t s i d e f o r each p i x e l
208 sums outs ide = sum(i d x s o u t s i d e , 1) ;
209

210 % f i n d the un ique no . o f nhood p i x e l s o u t s i d e (w i l l i t e r a t e
211 % ove r t h e s e no . s)
212 unique sums = unique (sums outs ide) ;
213

214 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
215 for a l g o i d x = 1 : n o f l o w a l g o s
216

217 % get the f l ow f o r t h i s c and i d a t e a l g o r i t hm
218 x f l = uv f l ows (: , : , 1 , a l g o i d x) ;
219 y f l = uv f l ows (: , : , 2 , a l g o i d x) ;
220

221 % i n i t i a l i z e the f e a t u r e to r e t u r n
222 f e a t u r e s = zeros (numel (x f l) , obj .FEATURES PER PIXEL) ;
223

224 % i t e r a t e ove r a l l un ique no . o f p i x e l s o u t s i d e
225 for s = unique sums
226 % get the p i x e l s which f a l l i n t h i s c a t e go r y
227 c u r r i d x s = sums outs ide==s ;
228

229 % get rows and c o l s f o r f o r t h e s e v a l i d p i x e l s
230 temp r 1 = nhood r 1 (: , c u r r i d x s) ;
231 temp c 1 = nhood c 1 (: , c u r r i d x s) ;
232 temp r 2 = nhood r 2 (: , c u r r i d x s) ;
233 temp c 2 = nhood c 2 (: , c u r r i d x s) ;
234

235

236 % throw away i n d i c e s which f a l l o u t s i d e (f i x temp r
237 % and temp c)
238 i f s ˜= 0
239 % s e l e c t the p i x e l (nhoods) which have t h i s no . o f

nhood p i x e l s o u t s i d e
240 t emp idxs out s ide = i d x s o u t s i d e (: , c u r r i d x s) ;
241

242 % so r t and d e l e t e the nhood p i x e l s which a r e o u t s i d e
243 [temp , r e m a i n i n g i d x s r s] = sort (t emp idxs outs ide ,

1) ;
244 r e m a i n i n g i d x s r s (end−s +1:end , :) = [] ;
245

246 % get the p r o j e c t i o n mat r i x A
247 c u r r p r o j a 1 = obj . p ro j a1 (r e m a i n i n g i d x s r s) ;
248 c u r r p r o j a 2 = obj . p ro j a2 (r e m a i n i n g i d x s r s) ;
249 c u r r p r o j a 3 = obj . p ro j a3 (r e m a i n i n g i d x s r s) ;
250 c u r r p r o j a 4 = obj . p ro j a4 (r e m a i n i n g i d x s r s) ;

76

Chapter : Conclusions and Future Work Ahmad Humayun

251

252 % get the p seudo inv d i s t a n c e
253 cu r r p inv d u = obj . p i n v d i s t u (r e m a i n i n g i d x s r s) ;
254 cu r r p i nv d v = obj . p i n v d i s t v (r e m a i n i n g i d x s r s) ;
255

256 % i f i t s not a 2D a r r a y s t r a i g h t e n the a r r a y s
257 i f ˜ a l l (s ize (c u r r p r o j a 1) == s ize (r e m a i n i n g i d x s r s

))
258 c u r r p r o j a 1 = c u r r p r o j a 1 ’ ;
259 c u r r p r o j a 2 = c u r r p r o j a 2 ’ ;
260 c u r r p r o j a 3 = c u r r p r o j a 3 ’ ;
261 c u r r p r o j a 4 = c u r r p r o j a 4 ’ ;
262

263 cu r r p inv d u = curr p inv d u ’ ;
264 cu r r p i nv d v = curr p inv d v ’ ;
265 end
266

267 % ad j u s t temp r and temp c wi th the i n d x s found
which a r e not o u t s i d e the image

268 r e m a i n i n g i d x s r s = sub2ind (s ize (temp r 1) ,
r ema in ing idx s r s , repmat (1 : s ize (temp c 1 , 2) , [
s ize (r ema in ing idx s r s , 1) 1])) ;

269 temp r 1 = temp r 1 (r e m a i n i n g i d x s r s) ;
270 temp c 1 = temp c 1 (r e m a i n i n g i d x s r s) ;
271 temp r 2 = temp r 2 (r e m a i n i n g i d x s r s) ;
272 temp c 2 = temp c 2 (r e m a i n i n g i d x s r s) ;
273 else
274 % get the p r o j e c t i o n mat r i x A
275 c u r r p r o j a 1 = repmat (obj . pro j a1 , [1 s ize (temp r 1 ,

2)]) ;
276 c u r r p r o j a 2 = repmat (obj . pro j a2 , [1 s ize (temp r 1 ,

2)]) ;
277 c u r r p r o j a 3 = repmat (obj . pro j a3 , [1 s ize (temp r 1 ,

2)]) ;
278 c u r r p r o j a 4 = repmat (obj . pro j a4 , [1 s ize (temp r 1 ,

2)]) ;
279

280 % get the p seudo inv d i s t a n c e
281 cu r r p inv d u = repmat (obj . p i nv d i s t u , [1 s ize (

temp r 1 , 2)]) ;
282 cu r r p i nv d v = repmat (obj . p i n v d i s t v , [1 s ize (

temp r 1 , 2)]) ;
283 end
284

285 % get the i n d x s f o r each p i x e l nhood
286 temp indxs = sub2ind (s ize (x f l) , temp r 1 , temp c 1) ;

77

Ahmad Humayun Chapter : Conclusions and Future Work

287 temp u 1 = x f l (temp indxs) ;
288 temp v 1 = y f l (temp indxs) ;
289 temp indxs = sub2ind (s ize (x f l) , temp r 2 , temp c 2) ;
290 temp u 2 = x f l (temp indxs) ;
291 temp v 2 = y f l (temp indxs) ;
292

293

294 %%% The main f e a t u r e computat ion
295 fu = temp u 1 − temp u 2 ;
296 fv = temp v 1 − temp v 2 ;
297

298 c u r r p r o j a 1 = c u r r p r o j a 1 .∗ fu + c u r r p r o j a 3 .∗ fv ;
299 c u r r p r o j a 2 = c u r r p r o j a 2 .∗ fu + c u r r p r o j a 4 .∗ fv ;
300

301 t = cur r p inv d u .∗ c u r r p r o j a 1 + cur r p i nv d v .∗
c u r r p r o j a 2 ;

302

303 i f ˜isempty (t)
304 f e a t u r e s (cu r r i dx s , 1) = max(t , [] , 1) ;
305 f e a t u r e s (cu r r i dx s , 2) = min(t , [] , 1) ;
306 f e a t u r e s (cu r r i dx s , 3) = var (t , 1 , 1) ;
307 end
308 end
309

310 % s t o r e
311 for f e a t i d x = 1 : obj .FEATURES PER PIXEL
312 co l spd (: , : , ((a l go idx −1)∗ obj .FEATURES PER PIXEL)+

f e a t i d x) = reshape (f e a t u r e s (: , f e a t i d x) , image sz) ;
313 end
314 end
315 end
316

317

318 function obj = e x t r a I n f o (obj)
319 d i s t = squeeze (obj . nhood 2 − obj . nhood 1) ;
320

321 n = sum(d i s t . ˆ 2 , 2) ;
322

323 obj . p ro j a1 = (d i s t (: , 1) . ˆ2) . / n ;
324 obj . p ro j a2 = (d i s t (: , 1) .∗ d i s t (: , 2)) . / n ;
325 obj . p ro j a3 = obj . p ro j a2 ;
326 obj . p ro j a4 = (d i s t (: , 2) . ˆ2) . / n ;
327

328 obj . p i n v d i s t u = 1 ./ n .∗ d i s t (: , 1) ;
329 obj . p i n v d i s t v = 1 ./ n .∗ d i s t (: , 2) ;
330 end

78

Chapter : Conclusions and Future Work Ahmad Humayun

331 end
332

333 end

Listing 5: OFLengthVarianceFeature class

1 c l a s s d e f OFLengthVarianceFeature < AbstractFeature
2 %OFLENGTHVARIANCEFEATURE computes the v a r i a n c e o f the f l ow v e c t o r
3 % l e n g t h s i n a sma l l window (d e f i n e d by nhood) around each p i x e l . The
4 % con s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which w i l l be used
5 % f o r computing t h i s f e a t u r e . Second argument i s o f the nhood (a 5x5
6 % window [c r] = meshgr id (−2:2 , −2:2) ; nhood = cat (3 , r (:) , c (:)) ;) .
7 % The c o n s t r u c t o r a l s o o p t i o n a l l y t a k e s a s i z e 2 v e c t o r f o r computing
8 % the f e a t u r e on s c a l e s p a c e (f i r s t v a l u e : number o f s c a l e s , second
9 % va l u e : r e s i z i n g f a c t o r) . I f u s i n g s c a l e s p a c e , ComputeFeatureVectors

10 % ob j e c t pas sed to c a l c F e a t u r e s shou l d have
11 % e x t r a i n f o . f l o w s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e) , apa r t from
12 % image sz . Note tha t i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e
13 % enough number o f s c a l e s i n a l l s c a l e s p a c e s t r u c t u r e . I f not
14 % us i ng s c a l e s p a c e , e x t r a i n f o . c a l c f l o w s . u v f l ow s i s r e q u i r e d f o r
15 % computing t h i s f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the
16 % output f e a t u r e s go up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n
17 % std−dev) w i th i n c r e a s i n g depth .
18 %
19 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th t h e i r
20 % r e s p e c t i v e s c a l e
21

22

23 p r o p e r t i e s
24 n o s c a l e s = 1 ;
25 s c a l e = 1 ;
26 nhood ;
27

28 f l o w i d s = [] ;
29 f l o w s h o r t t y p e s = {} ;
30 end
31

32

33 p r o p e r t i e s (Constant)
34 FEATURE TYPE = ’ Length Variance ’ ;
35 FEATURE SHORT TYPE = ’LV ’ ;
36 end
37

38

39 methods

79

Ahmad Humayun Chapter : Conclusions and Future Work

40 function obj = OFLengthVarianceFeature (c e l l f l o w s , nhood , vararg in
)

41 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low
algor i thm to compute ’ c l a s s (obj)]) ;

42

43 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
44 for a l g o i d x = 1 : length (c e l l f l o w s)
45 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
46 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
47 end
48

49 % ne ighborhood window p ro v i d ed by u s e r
50 obj . nhood = nhood ;
51

52 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
53 i f nargin > 2 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2
54 obj . n o s c a l e s = vararg in {1} (1) ;
55 obj . s c a l e = vararg in {1} (2) ;
56 end
57 end
58

59

60 function [l envar f ea tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

61 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
62 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
63 % c l a s s) . The s i z e o f l e n v a r i s the same as the i npu t image ,
64 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
65 % number o f s c a l e s
66

67 % f i n d which a l g o s to use
68 a l g o s t o u s e = c e l l f u n (@(x) find (strcmp (x , c a l c f e a t u r e v e c .

e x t r a i n f o . c a l c f l o w s . a l g o i d s)) , obj . f l o w s h o r t t y p e s) ;
69

70 a s s e r t (length (a l g o s t o u s e)==length (obj . f l o w s h o r t t y p e s) , [’Can
’ ’ t f i n d matching f low algor i thm (s) used in computation o f ’
c l a s s (obj)]) ;

71

72 i f obj . n o s c a l e s > 1
73 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e

’) && . . .
74 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e)) , . . .
75 ’The s c a l e space f o r UV f low has not been de f ined in the

80

Chapter : Conclusions and Future Work Ahmad Humayun

passed ComputeFeatureVectors ’) ;
76

77 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

78 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s , . . .

79 ’The s c a l e space g iven f o r UV f low in
ComputeFeatureVectors i s incompat ib le ’) ;

80

81 % get the number o f f l ow a l g o r i t hm s
82 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
83

84 % i n i t i a l i z e the output f e a t u r e
85 l envar = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

86

87 % i t e r a t e f o r mu l t i p l e s c a l e s
88 for s c a l e i d x = 1 : obj . n o s c a l e s
89

90 image sz = s ize (c a l c f e a t u r e v e c . e x t r a i n f o .
f l o w s c a l e s p a c e . s s { s c a l e i d x }) ;

91 image sz = image sz ([1 2]) ;
92

93 % compute l e n g t h v a r i a n c e f o r each o p t i c a l f l ow g i v en
94 l envar temp = obj . computeLenVarForEachUV (

c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s s {
s c a l e i d x } (: , : , : , a l g o s t o u s e) , image sz) ;

95

96 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
97 for f e a t i d x = 1 : s ize (lenvar temp , 3)
98 % r e s i z e and s t o r e
99 l envar (: , : , ((f e a t i d x −1)∗ obj . n o s c a l e s)+s c a l e i d x) =

i m r e s i z e (lenvar temp (: , : , f e a t i d x) ,
c a l c f e a t u r e v e c . image sz) ;

100 end
101 end
102 else
103 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

104

105 % compute l e n g t h v a r i a n c e f o r each o p t i c a l f l ow g i v en
106 l envar = obj . computeLenVarForEachUV (c a l c f e a t u r e v e c .

e x t r a i n f o . c a l c f l o w s . uv f l ows (: , : , : , a l g o s t o u s e) ,
c a l c f e a t u r e v e c . image sz) ;

81

Ahmad Humayun Chapter : Conclusions and Future Work

107 end
108

109 f e a tu r e dep th = s ize (lenvar , 3) ;
110 end
111

112

113 function f e a t u r e n o i d = returnNoID (obj)
114 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
115 % name
116

117 % c r e a t e un ique ID
118 nos = returnNoID@AbstractFeature (obj) ;
119

120 temp = (obj . n o s c a l e s ˆ obj . s c a l e) ∗numel (obj . nhood) ;
121 % get f i r s t 2 dec ima l d i g i t s
122 temp = mod(round(temp∗100) , 100) ;
123 f e a t u r e n o i d = (nos ∗100) + temp ;
124

125 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
126 end
127

128

129 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
130 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
131 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
132

133 window size = num2str(max((max(obj . nhood , [] , 1) − min(obj . nhood
, [] , 1)) +1)) ;

134 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .
f l o w s h o r t t y p e s) , 1) ;

135

136 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
137 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
138

139 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , [’ window s i z e ’
window size] , ’ no s c a l i n g ’ } ;

140

141 for s c a l e i d = 2 : obj . n o s c a l e s
142 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ window s i z e ’ window size] , [’ s c a l e ’ num2str(
s c a l e i d)] , [’ s i z e ’ sprintf (’ %.1 f%%’ , (obj . s c a l e ˆ(
s c a l e i d −1)) ∗100)] } ;

143 end
144 end

82

Chapter : Conclusions and Future Work Ahmad Humayun

145 end
146 end
147

148

149 methods (Access = p r i v a t e)
150 function [l envar] = computeLenVarForEachUV (obj , uv f lows ,

image sz)
151

152 n o f l o w a l g o s = s ize (uv f lows , 4) ;
153

154 % i n i t i a l i z e the output f e a t u r e
155 l envar = zeros (image sz (1) , image sz (2) , n o f l o w a l g o s) ;
156

157 % get the nhood r and c ’ s (each c o l g i v en a ne ighborhood
158 % around a p i x e l − nhood r i s row ind , nhood c i s c o l i nd)
159 [c o l s rows] = meshgrid (1 : image sz (2) , 1 : image sz (1)) ;
160 nhood rep = repmat (obj . nhood , [1 numel (rows) 1]) ;
161 nhood r = nhood rep (: , : , 1) + repmat (rows (:) ’ , [s ize (obj . nhood , 1)

1]) ;
162 nhood c = nhood rep (: , : , 2) + repmat (c o l s (:) ’ , [s ize (obj . nhood , 1)

1]) ;
163

164 % get the p i x e l i n d i c e s which a r e o u t s i d e
165 i d x s o u t s i d e = nhood r <= 0 | nhood c <= 0 | nhood r > image sz

(1) | nhood c > image sz (2) ;
166

167 % f i n d how many nhood p i x e l s a r e o u t s i d e f o r each p i x e l
168 sums outs ide = sum(i d x s o u t s i d e , 1) ;
169

170 % f i n d the un ique no . o f nhood p i x e l s o u t s i d e (w i l l i t e r a t e
171 % ove r t h e s e no . s)
172 unique sums = unique (sums outs ide) ;
173

174

175 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
176 for a l g o i d x = 1 : n o f l o w a l g o s
177

178 % get the f l ow f o r t h i s c and i d a t e a l g o r i t hm
179 x f l = uv f l ows (: , : , 1 , a l g o i d x) ;
180 y f l = uv f l ows (: , : , 2 , a l g o i d x) ;
181

182 % i n i t i a l i z e the f e a t u r e to r e t u r n
183 f e a t u r e s = zeros (numel (x f l) , 1) ;
184

185 % i t e r a t e ove r a l l un ique no . o f p i x e l s o u t s i d e
186 for s = unique sums

83

Ahmad Humayun Chapter : Conclusions and Future Work

187 % get the p i x e l s which f a l l i n t h i s c a t e go r y
188 c u r r i d x s = sums outs ide==s ;
189

190 % get rows and c o l s f o r f o r t h e s e v a l i d p i x e l s
191 temp r = nhood r (: , c u r r i d x s) ;
192 temp c = nhood c (: , c u r r i d x s) ;
193

194 % throw away i n d i c e s which f a l l o u t s i d e (f i x temp r
195 % and temp c)
196 i f s ˜= 0
197 % s e l e c t the p i x e l (nhoods) which have t h i s no . o f

nhood p i x e l s o u t s i d e
198 t emp idxs out s ide = i d x s o u t s i d e (: , c u r r i d x s) ;
199

200 % so r t and d e l e t e the nhood p i x e l s which a r e o u t s i d e
201 [temp , r e m a i n i n g i d x s r s] = sort (t emp idxs outs ide ,

1) ;
202 r e m a i n i n g i d x s r s (end−s +1:end , :) = [] ;
203

204 % ad j u s t temp r and temp c wi th the i n d x s found
which a r e not o u t s i d e the image

205 r e m a i n i n g i d x s r s = sub2ind (s ize (temp r) ,
r ema in ing idx s r s , repmat (1 : s ize (temp c , 2) , [
s ize (r ema in ing idx s r s , 1) 1])) ;

206 temp r = temp r (r e m a i n i n g i d x s r s) ;
207 temp c = temp c (r e m a i n i n g i d x s r s) ;
208 end
209

210 % get the i n d x s f o r each p i x e l nhood
211 temp indxs = sub2ind (s ize (x f l) , temp r , temp c) ;
212 temp u = x f l (temp indxs) ;
213 temp v = y f l (temp indxs) ;
214

215

216 %%% The main f e a t u r e computat ion
217 % leng t h v a r i a n c e
218 l en = sqrt (temp u .ˆ2 + temp v . ˆ 2) ;
219 mean len = repmat (mean(len , 1) , [s ize (len , 1) 1]) ;
220 l e n v a r = mean((l en − mean len) . ˆ 2 , 1) ;
221 f e a t u r e s (cu r r i dx s , 1) = l e n v a r ;
222 end
223

224 % s t o r e
225 l envar (: , : , a l g o i d x) = reshape (f e a tu r e s , image sz) ;
226 end
227 end

84

Chapter : Conclusions and Future Work Ahmad Humayun

228 end
229 end

Listing 6: PbEdgeStrengthFeature class

1 c l a s s d e f PbEdgeStrengthFeature < AbstractFeature
2 %PBEDGESTRENGTHFEATURE Summary o f t h i s c l a s s goes he r e
3 % De t a i l e d e x p l a n a t i o n goes he r e
4

5 p r o p e r t i e s
6 thre sho ld pb ;
7

8 n o s c a l e s = 1 ;
9 s c a l e = 1 ;

10 end
11

12

13 p r o p e r t i e s (Constant)
14 PRECOMPUTED PB FILE = ’pb . mat ’ ;
15

16 FEATURE TYPE = ’Pb Edge Strength ’ ;
17 FEATURE SHORT TYPE = ’PB ’ ;
18 end
19

20

21 methods
22 function obj = PbEdgeStrengthFeature (thresho ld , vara rg in)
23 % th r e s h o l d f o r Pb p r o v i d ed by u s e r
24 obj . th re sho ld pb = thre sho ld ;
25

26 i f nargin > 1 && i s v e c t o r (vararg in {2}) && length (vararg in {2}) ==
2

27 obj . n o s c a l e s = vararg in {2} (1) ;
28 obj . s c a l e = vararg in {2} (2) ;
29 end
30 end
31

32

33 function [pbedge f ea tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

34 CalcFlows . addPaths ()
35

36 i f obj . n o s c a l e s > 1
37 error (’ PbEdgeStrengthFeature : NoScaleSpace ’ , ’ Sca l e space not

supported yet ’) ;

85

Ahmad Humayun Chapter : Conclusions and Future Work

38 a s s e r t (˜ isempty (f i e l d s (c a l c f e a t u r e v e c . im1 sca l e space)) , ’
The s c a l e space f o r im 1 has not been de f ined in the
passed ComputeFeatureVectors ’) ;

39

40 a s s e r t (c a l c f e a t u r e v e c . im1 sca l e space . s c a l e == obj . s c a l e &&
. . .

41 c a l c f e a t u r e v e c . im1 sca l e space . n o s c a l e s >= obj .
n o s c a l e s , ’The s c a l e space g iven f o r im 1 in
ComputeFeatureVectors i s incompat ib le ’) ;

42

43 % i n i t i a l i z e the output f e a t u r e
44 pbedge = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , obj . n o s c a l e s) ;
45

46 % i t e r a t e f o r mu l t i p l e s c a l e s
47 for s c a l e i d x = 1 : obj . n o s c a l e s
48 % get the next image i n the s c a l e space
49 i m r e s i z e d = c a l c f e a t u r e v e c . im1 sca l e space . s s {

s c a l e i d x } ;
50

51 % compute the p r o b a b i l i t y o f boundary
52 i f s ize (c a l c f e a t u r e v e c . im1 , 3) == 1
53 [pbedge] = pbBGTG(im2double (i m r e s i z e d)) ;
54 else
55 [pbedge] = pbCGTG(im2double (i m r e s i z e d)) ;
56 end
57

58 % compute d i s t a n c e t r an s f o rm and r e s i z e i t to the
o r i g i n a l image s i z e

59 pbedge = i m r e s i z e (bwdist (pbedge > obj . th re sho ld pb) ,
c a l c f e a t u r e v e c . image sz) ;

60

61 % r e s i z e i t to the o r i g i n a l image s i z e
62 pbedge (: , : , s c a l e i d x) = i m r e s i z e (pb , c a l c f e a t u r e v e c .

image sz) ;
63 end
64 else
65 % i f precomputed pb e x i s t s
66 i f exist (f u l l f i l e (c a l c f e a t u r e v e c . s c e n e d i r , obj .

PRECOMPUTED PB FILE) , ’ f i l e ’) == 2
67 load (f u l l f i l e (c a l c f e a t u r e v e c . s c e n e d i r , obj .

PRECOMPUTED PB FILE)) ;
68 else
69 % compute the p r o b a b i l i t y o f boundary
70 i f s ize (c a l c f e a t u r e v e c . im1 , 3) == 1
71 [pbedge] = pbBGTG(im2double (c a l c f e a t u r e v e c . im1))

86

Chapter : Conclusions and Future Work Ahmad Humayun

;
72 else
73 [pbedge] = pbCGTG(im2double (c a l c f e a t u r e v e c . im1))

;
74 end
75 end
76

77 % compute d i s t a n c e t r an s f o rm and r e s i z e i t to the o r i g i n a l
image s i z e

78 pbedge = i m r e s i z e (double (bwdist (pbedge > obj . th re sho ld pb)) ,
c a l c f e a t u r e v e c . image sz) ;

79 end
80

81 f e a tu r e dep th = s ize (pbedge , 3) ;
82 end
83

84

85 function f e a t u r e n o i d = returnNoID (obj)
86 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
87 % name
88

89 % c r e a t e un ique ID
90 nos = returnNoID@AbstractFeature (obj) ;
91

92 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
93 % get f i r s t 2 dec ima l d i g i t s
94 temp = mod(round(temp∗100) , 100) ;
95 f e a t u r e n o i d = (nos ∗100) + temp ;
96

97 % i n c o r p o r a t e the t h r e s h o l d
98 f e a t u r e n o i d = round(obj . th re sho ld pb ∗ f e a t u r e n o i d) ;
99 end

100 end
101

102 end

Listing 7: PhotoConstancyFeature class

1 c l a s s d e f PhotoConstancyFeature < AbstractFeature
2 %PHOTOCONSTANCYFEATURE the | I 1 (x)−I 2 (x+u) | the a b s o l u t e d i f f e r e n c e i n
3 % p i x e l v a l u e s o f two images u s i n g the f l ow i n f o rma t i o n . The
4 % con s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which w i l l be used
5 % f o r computing t h i s f e a t u r e . The c o n s t r u c t o r a l s o o p t i o n a l l y t a k e s a
6 % s i z e 2 v e c t o r f o r computing the f e a t u r e on s c a l e s p a c e (f i r s t v a l u e :
7 % number o f s c a l e s , second va l u e : r e s i z i n g f a c t o r) . I f u s i n g

87

Ahmad Humayun Chapter : Conclusions and Future Work

8 % sca l e s p a c e , ComputeFeatureVectors o b j e c t pas sed to c a l c F e a t u r e s
9 % shou ld have im1 s c a l e s p a c e , im2 s c a l e s p a c e and

10 % e x t r a i n f o . f l o w s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e s) , apa r t from
11 % image sz . Note tha t i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e
12 % enough number o f s c a l e s i n a l l 3 s c a l e s p a c e s t r u c t u r e s . I f not
13 % us i ng s c a l e s p a c e im1 gray , im2 gray and
14 % e x t r a i n f o . c a l c f l o w s . u v f l ow s a r e r e q u i r e d f o r computing t h i s
15 % f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the output f e a t u r e s go
16 % up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n std−dev) w i th i n c r e a s i n g
17 % depth .
18 %
19 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th t h e i r
20 % r e s p e c t i v e s c a l e
21

22

23 p r o p e r t i e s
24 n o s c a l e s = 1 ;
25 s c a l e = 1 ;
26

27 f l o w i d s = [] ;
28 f l o w s h o r t t y p e s = {} ;
29 end
30

31

32 p r o p e r t i e s (Constant)
33 NAN VAL = 100 ;
34 FEATURE TYPE = ’ Photo Constancy ’ ;
35 FEATURE SHORT TYPE = ’PC ’ ;
36 end
37

38

39 methods
40 function obj = PhotoConstancyFeature (c e l l f l o w s , vararg in)
41 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;
42

43 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
44 for a l g o i d x = 1 : length (c e l l f l o w s)
45 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
46 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
47 end
48

49 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
50 i f nargin > 1 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2

88

Chapter : Conclusions and Future Work Ahmad Humayun

51 obj . n o s c a l e s = vararg in {1} (1) ;
52 obj . s c a l e = vararg in {1} (2) ;
53 end
54 end
55

56

57 function [photoconst f e a tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

58 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
59 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
60 % c l a s s) . The s i z e o f photocons t i s the same as the i npu t image ,
61 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
62 % number o f s c a l e s
63

64 i f obj . n o s c a l e s > 1
65 a s s e r t (˜ isempty (f i e l d s (c a l c f e a t u r e v e c . im1 sca l e space)) &&

. . .
66 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . im2 sca l e space)) , . . .
67 ’The s c a l e space f o r im 1 and/ or im 2 has not been

de f ined in the passed ComputeFeatureVectors ’) ;
68

69 a s s e r t (c a l c f e a t u r e v e c . im1 sca l e space . s c a l e == obj . s c a l e &&
. . .

70 c a l c f e a t u r e v e c . im1 sca l e space . n o s c a l e s >= obj .
n o s c a l e s , ’The s c a l e space g iven f o r im 1 in
ComputeFeatureVectors i s incompat ib le ’) ;

71

72 a s s e r t (c a l c f e a t u r e v e c . im2 sca l e space . s c a l e == obj . s c a l e &&
. . .

73 c a l c f e a t u r e v e c . im2 sca l e space . n o s c a l e s >= obj .
n o s c a l e s , ’The s c a l e space g iven f o r im 2 in
ComputeFeatureVectors i s incompat ib le ’) ;

74

75 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e
’) && . . .

76 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .
f l o w s c a l e s p a c e)) , . . .

77 ’The s c a l e space f o r UV f low has not been de f ined in the
passed ComputeFeatureVectors ’) ;

78

79 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

80 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s , . . .

81 ’The s c a l e space g iven f o r UV f low in
ComputeFeatureVectors i s incompat ib le ’) ;

89

Ahmad Humayun Chapter : Conclusions and Future Work

82

83

84 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
85

86 % i n i t i a l i z e the output f e a t u r e
87 photoconst = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

88

89 % i t e r a t e f o r mu l t i p l e s c a l e s
90 for s c a l e i d x = 1 : obj . n o s c a l e s
91 % get the next image i n the s c a l e space
92 i m 1 r e s i z e d = c a l c f e a t u r e v e c . im1 sca l e space . s s {

s c a l e i d x } ;
93 i m 2 r e s i z e d = c a l c f e a t u r e v e c . im2 sca l e space . s s {

s c a l e i d x } ;
94

95 [c o l s rows] = meshgrid (1 : s ize (im1 re s i z ed , 2) , 1 : s ize (
im1 re s i z ed , 1)) ;

96

97 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
98 for a l g o i d x = 1 : n o f l o w a l g o s
99 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s)
;

100

101 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching
f low algor i thm used in computation o f ’ c l a s s (
obj)]) ;

102

103 % get the next f l ow image i n the s c a l e space
104 u v r e s i z e d = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e . s s { s c a l e i d x } (: , : , : , a l g o i d) ;
105

106 % p r o j e c t the second image to the f i r s t a c c o r d i n g to
the f l ow

107 pro j im = interp2 (im2 re s i z ed , c o l s + u v r e s i z e d
(: , : , 1) , rows + u v r e s i z e d (: , : , 2) , ’ cub ic ’) ;

108

109 % compute the e r r o r i n the p r o j e c t i o n
110 pro j im = abs (i m 1 r e s i z e d − pro j im) ;
111 pro j im (isnan (pro j im)) = PhotoConstancyFeature .

NAN VAL;
112

113 % s t o r e
114 photoconst (: , : , ((a l go idx −1)∗ obj . n o s c a l e s)+

90

Chapter : Conclusions and Future Work Ahmad Humayun

s c a l e i d x) = i m r e s i z e (proj im , c a l c f e a t u r e v e c .
image sz) ;

115 end
116 end
117 else
118 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

119

120 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
121

122 % i n i t i a l i z e the output f e a t u r e
123 photoconst = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s) ;
124

125 [c o l s rows] = meshgrid (1 : c a l c f e a t u r e v e c . image sz (2) , 1 :
c a l c f e a t u r e v e c . image sz (1)) ;

126

127 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
128 for a l g o i d x = 1 : n o f l o w a l g o s
129 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s) ;
130

131 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching f low
algor i thm used in computation o f ’ c l a s s (obj)]) ;

132

133 % p r o j e c t the second image to the f i r s t a c c o r d i n g to the
f l ow

134 pro j im = interp2 (c a l c f e a t u r e v e c . im2 gray , . . .
135 c o l s + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 1 , a l g o i d) , . . .
136 rows + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 2 , a l g o i d) , ’ cub ic ’) ;
137

138 % compute the e r r o r i n the p r o j e c t i o n
139 pro j im = abs (c a l c f e a t u r e v e c . im1 gray − pro j im) ;
140 pro j im (isnan (pro j im)) = PhotoConstancyFeature .NAN VAL;
141

142 % s t o r e
143 photoconst (: , : , a l g o i d x) = pro j im ;
144 end
145 end
146

147 f e a tu r e dep th = s ize (photoconst , 3) ;
148 end
149

91

Ahmad Humayun Chapter : Conclusions and Future Work

150

151 function f e a t u r e n o i d = returnNoID (obj)
152 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
153 % name
154

155 % c r e a t e un ique ID
156 nos = returnNoID@AbstractFeature (obj) ;
157

158 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
159 % get f i r s t 2 dec ima l d i g i t s
160 temp = mod(round(temp∗100) , 100) ;
161 f e a t u r e n o i d = (nos ∗100) + temp ;
162

163 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
164 end
165

166

167 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
168 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
169 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
170

171 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .
f l o w s h o r t t y p e s) , 1) ;

172

173 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
174 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
175

176 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , ’ no s c a l i n g ’ } ;

177

178 for s c a l e i d = 2 : obj . n o s c a l e s
179 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ s c a l e ’ num2str(s c a l e i d)] , [’ s i z e ’ sprintf (’
%.1 f%%’ , (obj . s c a l e ˆ(s c a l e i d −1)) ∗100)] } ;

180 end
181 end
182 end
183 end
184

185 end

Listing 8: ReverseFlowAngleDiffFeature class

1 c l a s s d e f ReverseFlowAngleDif fFeature < AbstractFeature

92

Chapter : Conclusions and Future Work Ahmad Humayun

2 %REVERSEFLOWCONSTANCYFEATURE computes :
3 % x ’ = round (x + u {12}(x))
4 % \ t h e t a = \ p i − acos (u {12}(x) . u {21}(x ’))
5 % which i n s h o r t i s the ang l e d i f f e r e n c e between the fo rwa rd v e c t o r
6 % and the r e v e r s e v e c t o r (from the advec ted p o s i t i o n) . The
7 % con s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which w i l l be used
8 % f o r computing t h i s f e a t u r e . The c o n s t r u c t o r a l s o o p t i o n a l l y t a k e s a
9 % s i z e 2 v e c t o r f o r computing the f e a t u r e on s c a l e s p a c e (f i r s t v a l u e :

10 % number o f s c a l e s , second va l u e : r e s i z i n g f a c t o r) . I f u s i n g
11 % sca l e s p a c e , ComputeFeatureVectors o b j e c t pas sed to c a l c F e a t u r e s
12 % shou ld have e x t r a i n f o . f l o w s c a l e s p a c e (the f l ow s c a l e s p a c e
13 % s t r u c t u r e s) and e x t r a i n f o . f l o w s c a l e s p a c e r (the r e v e r s e f l ow
14 % s c a l e s p a c e s t r u c t u r e s) , apa r t from image sz . Note tha t i t i s the
15 % r e s p o n s i b i l i t y o f the u s e r to p r o v i d e enough number o f s c a l e s i n
16 % both the s c a l e s p a c e s t r u c t u r e s . I f not u s i n g s c a l e s p a c e ,
17 % e x t r a i n f o . c a l c f l o w s . u v f l ow s and
18 % e x t r a i n f o . c a l c f l o w s . u v f l o w s r e v e r s e a r e r e q u i r e d f o r computing
19 % t h i s f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the output f e a t u r e s
20 % go up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n std−dev) w i th
21 % i n c r e a s i n g depth .
22 %
23 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th t h e i r
24 % r e s p e c t i v e s c a l e
25

26

27

28 p r o p e r t i e s
29 n o s c a l e s = 1 ;
30 s c a l e = 1 ;
31

32 f l o w i d s = [] ;
33 f l o w s h o r t t y p e s = {} ;
34 end
35

36

37 p r o p e r t i e s (Constant)
38 NAN VAL = pi ;
39 FEATURE TYPE = ’ Reverse Flow Angle D i f f e r e n c e ’ ;
40 FEATURE SHORT TYPE = ’RA’ ;
41 end
42

43

44 methods
45 function obj = ReverseFlowAngleDif fFeature (c e l l f l o w s , vararg in)
46 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;

93

Ahmad Humayun Chapter : Conclusions and Future Work

47

48 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
49 for a l g o i d x = 1 : length (c e l l f l o w s)
50 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
51 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
52 end
53

54 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
55 i f nargin > 1 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2
56 obj . n o s c a l e s = vararg in {1} (1) ;
57 obj . s c a l e = vararg in {1} (2) ;
58 end
59 end
60

61

62 function [r e v a n g d i f f f e a tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

63 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
64 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
65 % c l a s s) . The s i z e o f r e v a n g d i f f i s the same as the i npu t image ,
66 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
67 % number o f s c a l e s
68

69 i f obj . n o s c a l e s > 1
70 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e

’) && . . .
71 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e)) && . . .
72 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e r)) , . . .
73 ’The s c a l e space f o r UV f low (or /and i t s r e v e r s e) has

not been de f ined in the passed ComputeFeatureVectors
’) ;

74

75 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

76 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s && . . .

77 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e r . s c a l e ==
obj . s c a l e && . . .

78 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e r . n o s c a l e s
>= obj . n o s c a l e s , . . .

79 ’The s c a l e space g iven f o r UV f low (or /and i t s r e v e r s e)
in ComputeFeatureVectors i s incompat ib le ’) ;

94

Chapter : Conclusions and Future Work Ahmad Humayun

80

81

82 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
83

84 % i n i t i a l i z e the output f e a t u r e
85 r e v a n g d i f f = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

86

87 % i t e r a t e f o r mu l t i p l e s c a l e s
88 for s c a l e i d x = 1 : obj . n o s c a l e s
89 im sz = s ize (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e r . s s { s c a l e i d x } (: , : , 1 , 1)) ;
90

91 [c o l s rows] = meshgrid (1 : im sz (2) , 1 : im sz (1)) ;
92

93 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
94 for a l g o i d x = 1 : n o f l o w a l g o s
95 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s)
;

96

97 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching
f low algor i thm used in computation o f ’ c l a s s (
obj)]) ;

98

99 % get the next f l ow image i n the s c a l e space
100 u v r e s i z e d = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e . s s { s c a l e i d x } (: , : , : , a l g o i d) ;
101 u v r e s i z e d r e v e r s e = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e r . s s { s c a l e i d x } (: , : , : , a l g o i d) ;
102

103 % compute x ’ = round (x + u {12}(x)) (advec ted po i n t)
104 r dash = rows + u v r e s i z e d (: , : , 2) ;
105 c dash = c o l s + u v r e s i z e d (: , : , 1) ;
106 r dash = round(r dash) ;
107 c dash = round(c dash) ;
108

109 % f i n d the p o i n t s which have f a l l e n o u t s i d e the
image

110 o u t s i d e i d c s = r dash < 1 | r dash > im sz (1) |
c dash < 1 | c dash > im sz (2) ;

111 r dash (o u t s i d e i d c s) = 1 ;
112 c dash (o u t s i d e i d c s) = 1 ;
113

114 ind dash = sub2ind (im sz , r dash , c dash) ;

95

Ahmad Humayun Chapter : Conclusions and Future Work

115

116 % no rma l i z e uv v e c t o r
117 norm val = hypot (u v r e s i z e d (: , : , 1) , u v r e s i z e d

(: , : , 2)) ;
118 u n = u v r e s i z e d (: , : , 1) . / norm val ;
119 v n = u v r e s i z e d (: , : , 2) . / norm val ;
120

121 % get the r e v e r s e f l ow
122 rev v = u v r e s i z e d r e v e r s e (: , : , 2) ;
123 rev u = u v r e s i z e d r e v e r s e (: , : , 1) ;
124

125 % no rma l i z e uv r e v e r s e v e c t o r
126 norm val = hypot (rev u (ind dash) , r ev v (ind dash)) ;
127 r ev u n = rev u (ind dash) . / norm val ;
128 r ev v n = rev v (ind dash) . / norm val ;
129

130 % compute u {12}(x) . u {21}(x ’)
131 temp = (rev v n .∗ v n) + (rev u n .∗ u n) ;
132 a n g d i f f = pi − acos (temp) ;
133

134 a n g d i f f (o u t s i d e i d c s) = ReverseFlowAngleDif fFeature
.NAN VAL;

135

136 % s t o r e
137 r e v a n g d i f f (: , : , ((a l go idx −1)∗ obj . n o s c a l e s)+

s c a l e i d x) = i m r e s i z e (real (a n g d i f f) ,
c a l c f e a t u r e v e c . image sz) ;

138 end
139 end
140 else
141 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

142 a s s e r t (˜ isempty (c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .
u v f l o w s r e v e r s e) , ’The r e v e r s e f low in CalcFlows ob j e c t
has not been de f ined in the passed

ComputeFeatureVectors ’) ;
143

144 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
145

146 % i n i t i a l i z e the output f e a t u r e
147 r e v a n g d i f f = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s) ;
148

149 [c o l s rows] = meshgrid (1 : c a l c f e a t u r e v e c . image sz (2) , 1 :
c a l c f e a t u r e v e c . image sz (1)) ;

96

Chapter : Conclusions and Future Work Ahmad Humayun

150

151 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
152 for a l g o i d x = 1 : n o f l o w a l g o s
153 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s) ;
154

155 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching f low
algor i thm used in computation o f ’ c l a s s (obj)]) ;

156

157 % compute x ’ = round (x + u {12}(x)) (advec ted po i n t)
158 r dash = rows + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 2 , a l g o i d) ;
159 c dash = c o l s + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 1 , a l g o i d) ;
160 r dash = round(r dash) ;
161 c dash = round(c dash) ;
162

163 % f i n d the p o i n t s which have f a l l e n o u t s i d e the image
164 o u t s i d e i d c s = r dash < 1 | r dash > c a l c f e a t u r e v e c .

image sz (1) | c dash < 1 | c dash > c a l c f e a t u r e v e c
. image sz (2) ;

165 r dash (o u t s i d e i d c s) = 1 ;
166 c dash (o u t s i d e i d c s) = 1 ;
167

168 ind dash = sub2ind (c a l c f e a t u r e v e c . image sz , r dash ,
c dash) ;

169

170 % no rma l i z e uv v e c t o r
171 norm val = hypot (c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 1 , a l g o i d) , c a l c f e a t u r e v e c . e x t r a i n f o
. c a l c f l o w s . uv f l ows (: , : , 2 , a l g o i d)) ;

172 u n = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . uv f l ows
(: , : , 1 , a l g o i d) . / norm val ;

173 v n = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . uv f l ows
(: , : , 2 , a l g o i d) . / norm val ;

174

175 % get the r e v e r s e f l ow
176 rev v = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

u v f l o w s r e v e r s e (: , : , 2 , a l g o i d) ;
177 rev u = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

u v f l o w s r e v e r s e (: , : , 1 , a l g o i d) ;
178

179 % no rma l i z e uv r e v e r s e v e c t o r
180 norm val = hypot (rev u (ind dash) , r ev v (ind dash)) ;
181 r ev u n = rev u (ind dash) . / norm val ;
182 r ev v n = rev v (ind dash) . / norm val ;

97

Ahmad Humayun Chapter : Conclusions and Future Work

183

184 % compute u {12}(x) . u {21}(x ’)
185 temp = (rev v n .∗ v n) + (rev u n .∗ u n) ;
186 a n g d i f f = pi − acos (temp) ;
187

188 a n g d i f f (o u t s i d e i d c s) = ReverseFlowAngleDif fFeature .
NAN VAL;

189

190 % s t o r e
191 r e v a n g d i f f (: , : , a l g o i d x) = real (a n g d i f f) ;
192 end
193 end
194

195 f e a tu r e dep th = s ize (r evangd i f f , 3) ;
196 end
197

198

199 function f e a t u r e n o i d = returnNoID (obj)
200 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
201 % name
202

203 % c r e a t e un ique ID
204 nos = returnNoID@AbstractFeature (obj) ;
205

206 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
207 % get f i r s t 2 dec ima l d i g i t s
208 temp = mod(round(temp∗100) , 100) ;
209 f e a t u r e n o i d = (nos ∗100) + temp ;
210

211 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
212 end
213

214

215 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
216 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
217 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
218

219 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .
f l o w s h o r t t y p e s) , 1) ;

220

221 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
222 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
223

224 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , ’ no s c a l i n g ’ } ;

225

98

Chapter : Conclusions and Future Work Ahmad Humayun

226 for s c a l e i d = 2 : obj . n o s c a l e s
227 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ s c a l e ’ num2str(s c a l e i d)] , [’ s i z e ’ sprintf (’
%.1 f%%’ , (obj . s c a l e ˆ(s c a l e i d −1)) ∗100)] } ;

228 end
229 end
230 end
231 end
232

233 end

Listing 9: ReverseFlowConstancyFeature class

1 c l a s s d e f ReverseFlowConstancyFeature < AbstractFeature
2 %REVERSEFLOWCONSTANCYFEATURE computes :
3 % x ’ = round (x + u {12}(x))
4 % | | x − (x ’ + u {21}(x ’)) | |
5 % which i n s h o r t i s the d i s t a n c e between the o r i g i n a l p o s i t i o n and
6 % the p o s i t i o n advec ted by the fo rwa rd f l ow f o l l ow e d by the r e v e r s e
7 % f low . The c o n s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which w i l l
8 % be used f o r computing t h i s f e a t u r e . The c o n s t r u c t o r a l s o o p t i o n a l l y
9 % take s a s i z e 2 v e c t o r f o r computing the f e a t u r e on s c a l e s p a c e

10 % (f i r s t v a l u e : number o f s c a l e s , second va l u e : r e s i z i n g f a c t o r) . I f
11 % us i ng s c a l e s p a c e , ComputeFeatureVectors o b j e c t pas sed to
12 % ca l c F e a t u r e s shou l d have e x t r a i n f o . f l o w s c a l e s p a c e (the f l ow
13 % s c a l e s p a c e s t r u c t u r e s) and e x t r a i n f o . f l o w s c a l e s p a c e r (the
14 % r e v e r s e f l ow s c a l e s p a c e s t r u c t u r e s) , apa r t from image sz . Note tha t
15 % i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e enough number o f
16 % s c a l e s i n both the s c a l e s p a c e s t r u c t u r e s . I f not u s i n g s c a l e s p a c e ,
17 % e x t r a i n f o . c a l c f l o w s . u v f l ow s and
18 % e x t r a i n f o . c a l c f l o w s . u v f l o w s r e v e r s e a r e r e q u i r e d f o r computing
19 % t h i s f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the output f e a t u r e s
20 % go up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n std−dev) w i th
21 % i n c r e a s i n g depth .
22 %
23 % The f e a t u r e s a r e f i r s t o r d e r ed by a l g o r i t hms and then wi th t h e i r
24 % r e s p e c t i v e s c a l e
25

26

27 p r o p e r t i e s
28 n o s c a l e s = 1 ;
29 s c a l e = 1 ;
30

31 f l o w i d s = [] ;

99

Ahmad Humayun Chapter : Conclusions and Future Work

32 f l o w s h o r t t y p e s = {} ;
33 end
34

35

36 p r o p e r t i e s (Constant)
37 NAN VAL = 10 ;
38 FEATURE TYPE = ’ Reverse Flow Constancy ’ ;
39 FEATURE SHORT TYPE = ’RC’ ;
40 end
41

42

43 methods
44 function obj = ReverseFlowConstancyFeature (c e l l f l o w s , vararg in)
45 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;
46

47 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
48 for a l g o i d x = 1 : length (c e l l f l o w s)
49 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
50 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
51 end
52

53 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
54 i f nargin > 1 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2
55 obj . n o s c a l e s = vararg in {1} (1) ;
56 obj . s c a l e = vararg in {1} (2) ;
57 end
58 end
59

60

61 function [r ev f l owcons t f e a tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

62 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
63 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
64 % c l a s s) . The s i z e o f r e v f l ow c o n s t i s the same as the i npu t image ,
65 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
66 % number o f s c a l e s
67

68 i f obj . n o s c a l e s > 1
69 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e

’) && . . .
70 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e)) && . . .
71 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .

100

Chapter : Conclusions and Future Work Ahmad Humayun

f l o w s c a l e s p a c e r)) , . . .
72 ’The s c a l e space f o r UV f low (or /and i t s r e v e r s e) has

not been de f ined in the passed ComputeFeatureVectors
’) ;

73

74 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

75 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s && . . .

76 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e r . s c a l e ==
obj . s c a l e && . . .

77 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e r . n o s c a l e s
>= obj . n o s c a l e s , . . .

78 ’The s c a l e space g iven f o r UV f low (or /and i t s r e v e r s e)
in ComputeFeatureVectors i s incompat ib le ’) ;

79

80

81 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
82

83 % i n i t i a l i z e the output f e a t u r e
84 r ev f l owcons t = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

85

86 % i t e r a t e f o r mu l t i p l e s c a l e s
87 for s c a l e i d x = 1 : obj . n o s c a l e s
88 im sz = s ize (c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e r . s s { s c a l e i d x } (: , : , 1 , 1)) ;
89

90 [c o l s rows] = meshgrid (1 : im sz (2) , 1 : im sz (1)) ;
91

92 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
93 for a l g o i d x = 1 : n o f l o w a l g o s
94 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s)
;

95

96 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching
f low algor i thm used in computation o f ’ c l a s s (
obj)]) ;

97

98 % get the next f l ow image i n the s c a l e space
99 u v r e s i z e d = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e . s s { s c a l e i d x } (: , : , : , a l g o i d) ;
100 u v r e s i z e d r e v e r s e = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e r . s s { s c a l e i d x } (: , : , : , a l g o i d) ;

101

Ahmad Humayun Chapter : Conclusions and Future Work

101

102 % compute x ’ = round (x + u {12}(x)) (advec ted po i n t)
103 r dash = rows + u v r e s i z e d (: , : , 2) ;
104 c dash = c o l s + u v r e s i z e d (: , : , 1) ;
105 r dash = round(r dash) ;
106 c dash = round(c dash) ;
107

108 % f i n d the p o i n t s which have f a l l e n o u t s i d e the
image

109 o u t s i d e i d c s = r dash < 1 | r dash > im sz (1) |
c dash < 1 | c dash > im sz (2) ;

110 r dash (o u t s i d e i d c s) = 1 ;
111 c dash (o u t s i d e i d c s) = 1 ;
112

113 % get the r e v e r s e f l ow
114 rev v = u v r e s i z e d r e v e r s e (: , : , 2) ;
115 rev u = u v r e s i z e d r e v e r s e (: , : , 1) ;
116

117 % compute | | x − (x ’ + u {21}(x ’)) | |
118 ind dash = sub2ind (im sz , r dash , c dash) ;
119

120 r dash = r dash + rev v (ind dash) ;
121 c dash = c dash + rev u (ind dash) ;
122

123 r e v e r s e d i s t = sqrt ((rows − r dash) . ˆ2 + (c o l s −
c dash) . ˆ 2) ;

124 r e v e r s e d i s t (o u t s i d e i d c s) =
ReverseFlowConstancyFeature .NAN VAL;

125

126 % s t o r e
127 r ev f l owcons t (: , : , ((a l go idx −1)∗ obj . n o s c a l e s)+

s c a l e i d x) = i m r e s i z e (r e v e r s e d i s t ,
c a l c f e a t u r e v e c . image sz) ;

128 end
129 end
130 else
131 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

132 a s s e r t (˜ isempty (c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .
u v f l o w s r e v e r s e) , ’The r e v e r s e f low in CalcFlows ob j e c t
has not been de f ined in the passed

ComputeFeatureVectors ’) ;
133

134 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
135

102

Chapter : Conclusions and Future Work Ahmad Humayun

136 % i n i t i a l i z e the output f e a t u r e
137 r ev f l owcons t = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s) ;
138

139 [c o l s rows] = meshgrid (1 : c a l c f e a t u r e v e c . image sz (2) , 1 :
c a l c f e a t u r e v e c . image sz (1)) ;

140

141 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
142 for a l g o i d x = 1 : n o f l o w a l g o s
143 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s) ;
144

145 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching f low
algor i thm used in computation o f ’ c l a s s (obj)]) ;

146

147 % compute x ’ = round (x + u {12}(x)) (advec ted po i n t)
148 r dash = rows + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 2 , a l g o i d) ;
149 c dash = c o l s + c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

uv f l ows (: , : , 1 , a l g o i d) ;
150 r dash = round(r dash) ;
151 c dash = round(c dash) ;
152

153 % f i n d the p o i n t s which have f a l l e n o u t s i d e the image
154 o u t s i d e i d c s = r dash < 1 | r dash > c a l c f e a t u r e v e c .

image sz (1) | c dash < 1 | c dash > c a l c f e a t u r e v e c
. image sz (2) ;

155 r dash (o u t s i d e i d c s) = 1 ;
156 c dash (o u t s i d e i d c s) = 1 ;
157

158 % get the r e v e r s e f l ow
159 rev v = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

u v f l o w s r e v e r s e (: , : , 2 , a l g o i d) ;
160 rev u = c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s .

u v f l o w s r e v e r s e (: , : , 1 , a l g o i d) ;
161

162 % compute | | x − (x ’ + u {21}(x ’)) | |
163 ind dash = sub2ind (c a l c f e a t u r e v e c . image sz , r dash ,

c dash) ;
164

165 r dash = r dash + rev v (ind dash) ;
166 c dash = c dash + rev u (ind dash) ;
167

168 r e v e r s e d i s t = sqrt ((rows − r dash) . ˆ2 + (c o l s − c dash)
. ˆ 2) ;

169 r e v e r s e d i s t (o u t s i d e i d c s) = ReverseFlowConstancyFeature

103

Ahmad Humayun Chapter : Conclusions and Future Work

.NAN VAL;
170

171 % s t o r e
172 r ev f l owcons t (: , : , a l g o i d x) = r e v e r s e d i s t ;
173 end
174 end
175

176 f e a tu r e dep th = s ize (rev f lowconst , 3) ;
177 end
178

179

180 function f e a t u r e n o i d = returnNoID (obj)
181 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
182 % name
183

184 % c r e a t e un ique ID
185 nos = returnNoID@AbstractFeature (obj) ;
186

187 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
188 % get f i r s t 2 dec ima l d i g i t s
189 temp = mod(round(temp∗100) , 100) ;
190 f e a t u r e n o i d = (nos ∗100) + temp ;
191

192 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
193 end
194

195

196 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
197 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
198 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
199

200 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .
f l o w s h o r t t y p e s) , 1) ;

201

202 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
203 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
204

205 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , ’ no s c a l i n g ’ } ;

206

207 for s c a l e i d = 2 : obj . n o s c a l e s
208 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ s c a l e ’ num2str(s c a l e i d)] , [’ s i z e ’ sprintf (’
%.1 f%%’ , (obj . s c a l e ˆ(s c a l e i d −1)) ∗100)] } ;

209 end

104

Chapter : Conclusions and Future Work Ahmad Humayun

210 end
211 end
212 end
213

214 end

Listing 10: SparseSetTextureFeature class

1 c l a s s d e f SparseSetTextureFeature < AbstractFeature
2 %SPARSESETTEXTUREFEATURE computes the d i f f e r e n c e i n t e x t u r e g i v en by
3 % Spar se Set o f Texture f e a t u r e s as proposed i n :
4 % Brox , T. , From p i x e l s to r e g i o n s : p a r t i a l d i f f e r e n t i a l
5 % equa t i o n s i n image a n a l y s i s , A p r i l 2005
6 % Given the advec ted p o s i t i o n o f each p i x e l x ’ = round (x +
7 % u {12}(x)) , i t computes the maha lanob i s d i s t a n c e between T1(x) and
8 % T2(x ’) , where T1 i s the t e x t u r e f e a t u r e f o r f rame 1 , and T2 i s f o r
9 % frame 2 . The c o n s t r u c t o r t a k e s a c e l l a r r a y o f Flow o b j e c t s which

10 % w i l l be used f o r computing t h i s f e a t u r e . The c o n s t r u c t o r a l s o
11 % op t i o n a l l y t a k e s a s i z e 2 v e c t o r f o r computing the f e a t u r e on
12 % s c a l e s p a c e (f i r s t v a l u e : number o f s c a l e s , second va l u e : r e s i z i n g
13 % f a c t o r) . I f u s i n g s c a l e s p a c e , ComputeFeatureVectors o b j e c t pas sed
14 % to c a l c F e a t u r e s shou l d have im1 s c a l e s p a c e , im2 s c a l e s p a c e and
15 % e x t r a i n f o . f l o w s c a l e s p a c e (the s c a l e s p a c e s t r u c t u r e s) , apa r t from
16 % image sz . Note tha t i t i s the r e s p o n s i b i l i t y o f the u s e r to p r o v i d e
17 % enough number o f s c a l e s i n a l l 3 s c a l e s p a c e s t r u c t u r e s . I f not
18 % us i ng s c a l e s p a c e im1 gray , im2 gray and
19 % e x t r a i n f o . c a l c f l o w s . u v f l ow s a r e r e q u i r e d f o r computing t h i s
20 % f e a t u r e . I f u s i n g the s c a l e s p a c e , u s u a l l y , the output f e a t u r e s go
21 % up i n the s c a l e s p a c e (i n c r e a s i n g g au s s i a n std−dev) w i th i n c r e a s i n g
22 % depth .
23 %
24 % The f e a t u r e s a r e f i r s t o r d e r ed by f l ow a l g o r i t hm s and then wi th
25 % t h e i r r e s p e c t i v e s c a l e
26

27

28 p r o p e r t i e s
29 n o s c a l e s = 1 ;
30 s c a l e = 1 ;
31

32 f l o w i d s = [] ;
33 f l o w s h o r t t y p e s = {} ;
34 end
35

36

37 p r o p e r t i e s (Constant)

105

Ahmad Humayun Chapter : Conclusions and Future Work

38 PRECOMPUTED ST FILE = ’ s p a r s e t e x t u r e s . mat ’ ;
39

40 NAN VAL = 100 ;
41 FEATURE TYPE = ’ Sparse Set Texture D i f f e r e n c e (Mahalanobis) ’ ;
42 FEATURE SHORT TYPE = ’STm’ ;
43 end
44

45

46 methods
47 function obj = SparseSetTextureFeature (c e l l f l o w s , vararg in)
48 a s s e r t (˜ isempty (c e l l f l o w s) , [’ There should be a t l e a s t 1 f low

algor i thm to compute ’ c l a s s (obj)]) ;
49

50 % s t o r e the f l ow a l g o r i t hm s to be used and t h e i r i d s
51 for a l g o i d x = 1 : length (c e l l f l o w s)
52 obj . f l o w s h o r t t y p e s {end+1} = c e l l f l o w s { a l g o i d x } .

OF SHORT TYPE;
53 obj . f l o w i d s (end+1) = c e l l f l o w s { a l g o i d x } . returnNoID () ;
54 end
55

56 % s t o r e any s c a l e s p a c e i n f o p r o v i d ed by u s e r
57 i f nargin > 1 && i s v e c t o r (vararg in {1}) && length (vara rg in {1}) ==

2
58 obj . n o s c a l e s = vararg in {1} (1) ;
59 obj . s c a l e = vararg in {1} (2) ;
60 end
61 end
62

63

64 function [t e x t u r e d i f f f e a tu r e dep th] = ca l cFea tu r e s (obj ,
c a l c f e a t u r e v e c)

65 % t h i s f u n c t i o n ou tpu t s the f e a t u r e f o r t h i s c l a s s , and the depth
66 % of t h i s f e a t u r e (number o f un ique f e a t u r e s a s s o c i a t e d wi th t h i s
67 % c l a s s) . The s i z e o f t e x t u r e d i f f i s the same as the i npu t image ,
68 % with a depth e q u i v a l e n t to the number o f f l ow a l g o s t imes the
69 % number o f s c a l e s
70

71 i f obj . n o s c a l e s > 1
72 a s s e r t (˜ isempty (f i e l d s (c a l c f e a t u r e v e c . im1 sca l e space)) &&

. . .
73 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . im2 sca l e space)) , . . .
74 ’The s c a l e space f o r im 1 and/ or im 2 has not been

de f ined in the passed ComputeFeatureVectors ’) ;
75

76 a s s e r t (c a l c f e a t u r e v e c . im1 sca l e space . s c a l e == obj . s c a l e &&
. . .

106

Chapter : Conclusions and Future Work Ahmad Humayun

77 c a l c f e a t u r e v e c . im1 sca l e space . n o s c a l e s >= obj .
n o s c a l e s , ’The s c a l e space g iven f o r im 1 in
ComputeFeatureVectors i s incompat ib le ’) ;

78

79 a s s e r t (c a l c f e a t u r e v e c . im2 sca l e space . s c a l e == obj . s c a l e &&
. . .

80 c a l c f e a t u r e v e c . im2 sca l e space . n o s c a l e s >= obj .
n o s c a l e s , ’The s c a l e space g iven f o r im 2 in
ComputeFeatureVectors i s incompat ib le ’) ;

81

82 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ f l o w s c a l e s p a c e
’) && . . .

83 ˜isempty (f i e l d s (c a l c f e a t u r e v e c . e x t r a i n f o .
f l o w s c a l e s p a c e)) , . . .

84 ’The s c a l e space f o r UV f low has not been de f ined in the
passed ComputeFeatureVectors ’) ;

85

86 a s s e r t (c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . s c a l e ==
obj . s c a l e && . . .

87 c a l c f e a t u r e v e c . e x t r a i n f o . f l o w s c a l e s p a c e . n o s c a l e s >=
obj . n o s c a l e s , . . .

88 ’The s c a l e space g iven f o r UV f low in
ComputeFeatureVectors i s incompat ib le ’) ;

89

90

91 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
92

93 % i n i t i a l i z e the output f e a t u r e
94 t e x t u r e d i f f = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s ∗ obj .
n o s c a l e s) ;

95

96 % i t e r a t e f o r mu l t i p l e s c a l e s
97 for s c a l e i d x = 1 : obj . n o s c a l e s
98 % get the next image i n the s c a l e space
99 i m 1 r e s i z e d = c a l c f e a t u r e v e c . im1 sca l e space . s s {

s c a l e i d x } ;
100 i m 2 r e s i z e d = c a l c f e a t u r e v e c . im2 sca l e space . s s {

s c a l e i d x } ;
101

102 % compute s p a r s e s e t o f t e x t u r e f e a t u r e s f o r both images
103 s p a r s e s e t t e x t 1 = obj . computeSparseSetTexture (

i m 1 r e s i z e d) ;
104 s p a r s e s e t t e x t 2 = obj . computeSparseSetTexture (

i m 2 r e s i z e d) ;
105

107

Ahmad Humayun Chapter : Conclusions and Future Work

106 [c o l s rows] = meshgrid (1 : s ize (im1 re s i z ed , 2) , 1 : s ize (
im1 re s i z ed , 1)) ;

107

108 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
109 for a l g o i d x = 1 : n o f l o w a l g o s
110 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s)
;

111

112 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching
f low algor i thm used in computation o f ’ c l a s s (
obj)]) ;

113

114 % get the next f l ow image i n the s c a l e space
115 u v r e s i z e d = c a l c f e a t u r e v e c . e x t r a i n f o .

f l o w s c a l e s p a c e . s s { s c a l e i d x } (: , : , : , a l g o i d) ;
116

117 p r o j t e x t u r e = zeros (s ize (s p a r s e s e t t e x t 2)) ;
118 t e x t u r e v a r = zeros (1 , 1 , s ize (s p a r s e s e t t e x t 2 , 3)) ;
119

120 for t e x t i d x = 1 : s ize (p r o j t e x t u r e , 3)
121 % p r o j e c t the second image ’ s t e x t u r e f e a t u r e to

the f i r s t a c c o r d i n g to the f l ow
122 p r o j t e x t u r e (: , : , t e x t i d x) = interp2 (

s p a r s e s e t t e x t 2 (: , : , t e x t i d x) , . . .
123 c o l s + u v r e s i z e d (: , : , 1) , . . .
124 rows + u v r e s i z e d (: , : , 2) , ’ cub ic ’) ;
125

126 % compute v a r i a n c e o f each f e a t u r e
127 temp = [s p a r s e s e t t e x t 1 (: , : , t e x t i d x)

s p a r s e s e t t e x t 2 (: , : , t e x t i d x)] ;
128 t e x t u r e v a r (t e x t i d x) = var (temp (:)) ;
129 end
130

131 t e x t u r e v a r = repmat (t exture var , [s ize (im1 re s i z ed
, 1) s ize (im1 re s i z ed , 2)]) ;

132

133 % compute the Maha lanob i s d i s t a n c e f o r the t e x t u r e
f e a t u r e s

134 p r o j t e x t u r e = (s p a r s e s e t t e x t 1 − p r o j t e x t u r e) . ˆ 2 ;
135 p r o j t e x t u r e = sqrt (sum(p r o j t e x t u r e . / t exture var ,

3)) ;
136

137 p r o j t e x t u r e (isnan (p r o j t e x t u r e)) =
SparseSetTextureFeature .NAN VAL;

138

108

Chapter : Conclusions and Future Work Ahmad Humayun

139 % s t o r e
140 t e x t u r e d i f f (: , : , ((a l go idx −1)∗ obj . n o s c a l e s)+

s c a l e i d x) = i m r e s i z e (p ro j t e x t u r e ,
c a l c f e a t u r e v e c . image sz) ;

141 end
142 end
143 else
144 a s s e r t (i s f i e l d (c a l c f e a t u r e v e c . e x t r a i n f o , ’ c a l c f l o w s ’) , ’

The CalcFlows ob j e c t has not been de f ined in the passed
ComputeFeatureVectors ’) ;

145

146 n o f l o w a l g o s = length (obj . f l o w s h o r t t y p e s) ;
147

148 % i f precomputed pb e x i s t s
149 i f exist (f u l l f i l e (c a l c f e a t u r e v e c . s c e n e d i r , obj .

PRECOMPUTED ST FILE) , ’ f i l e ’) == 2
150 load (f u l l f i l e (c a l c f e a t u r e v e c . s c e n e d i r , obj .

PRECOMPUTED ST FILE)) ;
151 s p a r s e s e t t e x t 1 = T1 ;
152 s p a r s e s e t t e x t 2 = T2 ;
153 else
154 % compute s p a r s e s e t o f t e x t u r e f e a t u r e s f o r both images
155 s p a r s e s e t t e x t 1 = obj . computeSparseSetTexture (

c a l c f e a t u r e v e c . im1) ;
156 s p a r s e s e t t e x t 2 = obj . computeSparseSetTexture (

c a l c f e a t u r e v e c . im2) ;
157 T1 = s p a r s e s e t t e x t 1 ;
158 T2 = s p a r s e s e t t e x t 2 ;
159 save (f u l l f i l e (c a l c f e a t u r e v e c . s c e n e d i r , obj .

PRECOMPUTED ST FILE) , ’T1 ’ , ’T2 ’) ;
160 end
161

162 % i n i t i a l i z e the output f e a t u r e
163 t e x t u r e d i f f = zeros (c a l c f e a t u r e v e c . image sz (1) ,

c a l c f e a t u r e v e c . image sz (2) , n o f l o w a l g o s) ;
164

165 [c o l s rows] = meshgrid (1 : c a l c f e a t u r e v e c . image sz (2) , 1 :
c a l c f e a t u r e v e c . image sz (1)) ;

166

167 % i t e r a t e ove r a l l the c and i d a t e f l ow a l g o r i t hm s
168 for a l g o i d x = 1 : n o f l o w a l g o s
169 a l g o i d = strcmp (obj . f l o w s h o r t t y p e s { a l g o i d x } ,

c a l c f e a t u r e v e c . e x t r a i n f o . c a l c f l o w s . a l g o i d s) ;
170

171 a s s e r t (nnz(a l g o i d) == 1 , [’Can ’ ’ t f i n d matching f low
algor i thm used in computation o f ’ c l a s s (obj)]) ;

109

Ahmad Humayun Chapter : Conclusions and Future Work

172

173 p r o j t e x t u r e = zeros (s ize (s p a r s e s e t t e x t 2)) ;
174 t e x t u r e v a r = zeros (1 , 1 , s ize (s p a r s e s e t t e x t 2 , 3)) ;
175

176 for t e x t i d x = 1 : s ize (p r o j t e x t u r e , 3)
177 % p r o j e c t the second image ’ s t e x t u r e f e a t u r e to the

f i r s t a c c o r d i n g to the f l ow
178 p r o j t e x t u r e (: , : , t e x t i d x) = interp2 (s p a r s e s e t t e x t 2

(: , : , t e x t i d x) , . . .
179 c o l s + c a l c f e a t u r e v e c . e x t r a i n f o .

c a l c f l o w s . uv f l ows (: , : , 1 , a l g o i d) , . . .
180 rows + c a l c f e a t u r e v e c . e x t r a i n f o .

c a l c f l o w s . uv f l ows (: , : , 2 , a l g o i d) , ’
cub ic ’) ;

181

182 % compute v a r i a n c e o f each f e a t u r e
183 temp = [s p a r s e s e t t e x t 1 (: , : , t e x t i d x) s p a r s e s e t t e x t 2

(: , : , t e x t i d x)] ;
184 t e x t u r e v a r (t e x t i d x) = var (temp (:)) ;
185 end
186

187 t e x t u r e v a r = repmat (t exture var , c a l c f e a t u r e v e c .
image sz) ;

188

189 % compute the Maha lanob i s d i s t a n c e f o r the t e x t u r e
f e a t u r e s

190 p r o j t e x t u r e = (s p a r s e s e t t e x t 1 − p r o j t e x t u r e) . ˆ 2 ;
191 p r o j t e x t u r e = sqrt (sum(p r o j t e x t u r e . / t exture var , 3))

;
192

193 p r o j t e x t u r e (isnan (p r o j t e x t u r e)) =
SparseSetTextureFeature .NAN VAL;

194

195 % s t o r e
196 t e x t u r e d i f f (: , : , a l g o i d x) = p r o j t e x t u r e ;
197 end
198 end
199

200 f e a tu r e dep th = s ize (t e x t u r e d i f f , 3) ;
201 end
202

203

204 function f e a t u r e n o i d = returnNoID (obj)
205 % c r e a t e s un ique f e a t u r e number , good f o r s t o r i n g wi th the f i l e
206 % name
207

110

Chapter : Conclusions and Future Work Ahmad Humayun

208 % c r e a t e un ique ID
209 nos = returnNoID@AbstractFeature (obj) ;
210

211 temp = obj . n o s c a l e s ˆ obj . s c a l e ;
212 % get f i r s t 2 dec ima l d i g i t s
213 temp = mod(round(temp∗100) , 100) ;
214 f e a t u r e n o i d = (nos ∗100) + temp ;
215

216 f e a t u r e n o i d = f e a t u r e n o i d + sum(obj . f l o w i d s) ;
217 end
218

219

220 function r e t u r n f e a t u r e l i s t = re tu rnFeatur eL i s t (obj)
221 % c r e a t e s a c e l l v e c t o r where each i tem con t a i n s a s t r i n g o f the
222 % f e a t u r e type (i n the o r d e r the w i l l be s p i t out by c a l c F e a t u r e s)
223

224 r e t u r n f e a t u r e l i s t = c e l l (obj . n o s c a l e s ∗ length (obj .
f l o w s h o r t t y p e s) , 1) ;

225

226 for f l o w i d = 1 : length (obj . f l o w s h o r t t y p e s)
227 s t a r t i n g n o = (f l ow id −1)∗ obj . n o s c a l e s ;
228

229 r e t u r n f e a t u r e l i s t { s t a r t i n g n o +1} = { [obj .FEATURE TYPE ’
us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d }] , ’ no s c a l i n g ’ } ;

230

231 for s c a l e i d = 2 : obj . n o s c a l e s
232 r e t u r n f e a t u r e l i s t { s t a r t i n g n o+s c a l e i d } = { [obj .

FEATURE TYPE ’ us ing ’ obj . f l o w s h o r t t y p e s { f l o w i d
}] , [’ s c a l e ’ num2str(s c a l e i d)] , [’ s i z e ’ sprintf (’
%.1 f%%’ , (obj . s c a l e ˆ(s c a l e i d −1)) ∗100)] } ;

233 end
234 end
235 end
236 end
237

238

239 methods (Access = p r i v a t e)
240 function s p a r s e s e t t e x t = computeSparseSetTexture (obj , im)
241 i f s ize (im , 3) == 3
242 F = d i s c r i m i n a t i v e t e x t u r e f e a t u r e (double (im) , 6 , [] , 1) ;
243 else
244 F = d i s c r i m i n a t i v e t e x t u r e f e a t u r e (double (im) , 6 , [] , 0) ;
245 end
246

247 s p a r s e s e t t e x t = reshape (F ’ , [s ize (im , 1) , s ize (im , 2) , s ize (F , 1)]) ;
248 end

111

Ahmad Humayun Chapter : Conclusions and Future Work

249 end
250

251 end

The remaining code is in the accompanying DVD

112

Bibliography

[1] S. Baker, D. Scharstein, J.P. Lewis, S. Roth, M.J. Black, and R. Szeliski. A database and Evaluation
Methodology for Optical Flow. Technical Report MSR-TR-2009-179, Microsoft Research, Redmond,
WA, dec 2009. v, vii, 28, 35, 36, 45, 49, 50, 55, 56

[2] J.L. Barron, D.J. Fleet, and S.S. Beauchemin. Performance of optical flow techniques. International
Journal of Computer Vision, 12(1):43–77, 1994. 49, 50

[3] J. Bergen, P. Anandan, K. Hanna, and R. Hingorani. Hierarchical model-based motion estimation.
In Computer Vision ECCV ’92, pages 237–252. Springer, 1992. 11

[4] M. Black. Recursive non-linear estimation of discontinuous flow fields. Computer Vision ECCV ’94,
pages 138–145, 1994. 8

[5] M.J. Black and P. Anandan. The robust estimation of multiple motions: Parametric and piecewise-
smooth flow fields. Computer Vision and Image Understanding, 63(1):75–104, 1996. 28

[6] MJ Black and AD Jepson. Estimating optical flow in segmented images using variable-order paramet-
ric models with local deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
18(10):972–986, 1996. 8

[7] G. Bradski and A. Kaehler. Learning OpenCV. O’Reilly Media Inc., 2008. URL http://oreilly.

com/catalog/9780596516130. 18, 23

[8] L. Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996. 21

[9] L. Breiman. Random forests. Machine learning, 45(1):5–32, 2001. 14, 17, 20, 21, 22

[10] L. Breiman and A. Cutler. Random Forests. http://http://www.stat.berkeley.edu/~breiman/

RandomForests/cc_home.htm. 23

[11] L. Breiman, J. Friedman, C. Stone, and R. Olshen. Classification and Regression Trees. Chapman
and Hall/CRC, Monterey, CA, 1984. ISBN 0412048418. 17, 19, 20

[12] P. Brodatz. Textures; a Photographic Album for Artists and Designers. Dover Publications New
York, 1966. ISBN 0486216691. v, 26

[13] T. Brox. From pixels to regions: partial differential equations in image analysis. PhD thesis, Faculty
of Mathematics and Computer Science, Saarland University, Germany, April 2005. v, 26

113

http://oreilly.com/catalog/9780596516130
http://oreilly.com/catalog/9780596516130
http://http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
http://http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm

Ahmad Humayun Chapter : BIBLIOGRAPHY

[14] T. Brox and J. Malik. Large Displacement Optical Flow: Descriptor Matching in Variational Motion
Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 99, 2010. 28

[15] M.M. Chang, A.M. Tekalp, and M.I. Sezan. Simultaneous motion estimation and segmentation. IEEE
Transactions on Image Processing, 6(9):1326 –1333, sep 1997. 6, 8

[16] M. Collins, R.E. Schapire, and Y. Singer. Logistic regression, AdaBoost and Bregman distances.
Machine Learning, 48(1):253–285, 2002. 5

[17] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273–297, 1995. 23

[18] Y. Freund and R. Schapire. A desicion-theoretic generalization of on-line learning and an application
to boosting. In Computational learning theory, pages 23–37. Springer, 1995. 24

[19] M. Galun, A. Apartsin, and R. Basri. Multiscale segmentation by combining motion and intensity
cues. In Proceedings of the 2005 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’05), volume 1, pages 256–263, june 2005. 7, 9, 10

[20] B. Gillam. Shape and meaning in the perception of occlusion. Journal of Vision, 7(9):608, 2007. 1

[21] C. Goutte. Note on Free Lunches and Cross-Validation. Neural Computation, 9:1245–1249, 1997. 34

[22] S.E. Grigorescu, N. Petkov, and P. Kruizinga. Comparison of texture features based on Gabor filters.
IEEE Transactions on Image Processing, 11(10):1160–1167, 2002. 25

[23] F. Heitz and P. Bouthemy. Multimodal estimation of discontinuous optical flow using Markov random
fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(12):1217–1232, 1993. 6

[24] B.K.P. Horn and B.G. Schunck. Determining optical flow. Artificial intelligence, 17(1-3):185–203,
1981. 6, 28

[25] M. Irani and P. Anandan. Factorization with uncertainty. Computer Vision ECCV ’00, pages
539–553, 2000. 10

[26] M.P. Kumar, P.H.S. Torr, and A. Zisserman. Learning layered motion segmentations of video. In-
ternational Journal of Computer Vision, 76(3):301–319, 2008. 11

[27] C. Liu, W.T. Freeman, E.H. Adelson, and Y. Weiss. Human-assisted motion annotation. In Proceed-
ings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’08), pages
1–8. IEEE Computer Society, 2008. vii, 56, 57

[28] W.-Y. Loh. Classification and regression tree methods. In Encyclopedia of Statistics in Quality and
Reliability, pages 315–323. Wiley, Chichester, UK, 2008. URL http://www.stat.wisc.edu/~loh/

treeprogs/guide/eqr.pdf. 17, 19

[29] O. Mac Aodha, G.J. Brostow, and M. Pollefeys. Segmenting Video Into Classes of Algorithm-
Suitability. In Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’10), pages 1054–1061, june 2010. vii, 5, 14, 23, 24, 28, 31, 35, 36, 45, 51, 52

[30] S. Markovich. Amodal completion in visual perception. In Visual Mathematics, volume 4, 2002. 1

114

http://www.stat.wisc.edu/~loh/treeprogs/guide/eqr.pdf
http://www.stat.wisc.edu/~loh/treeprogs/guide/eqr.pdf

Chapter : BIBLIOGRAPHY Ahmad Humayun

[31] D. Martin, C. Fowlkes, D. Tal, and J. Malik. A Database of Human Segmented Natural Images
and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In
Proceedings of the Eighth IEEE International Conference on Computer Vision, (ICCV ’01), volume 2,
pages 416–423, July 2001. 32

[32] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5):530–549, 2004. 12

[33] D.R. Martin, C.C. Fowlkes, and J. Malik. Learning to detect natural image boundaries using local
brightness, color, and texture cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,
26(5):530–549, 2004. 32

[34] R. Megret and D. DeMenthon. A Survey of Spatio-Temporal Grouping Techniques. Technical Report
CS-TR-4403, Language and Media Processing, University of Maryland, College Park, MD, August
2002. 10

[35] M. Muja and D.G. Lowe. Fast approximate nearest neighbors with automatic algorithm configuration.
In International Conference on Computer Vision Theory and Applications (VISSAPP ’09), volume
331–340, 2009. 12

[36] A.S. Ogale and Y. Aloimonos. A roadmap to the integration of early visual modules. International
Journal of Computer Vision, 72(1):9–25, 2007. 1, 4

[37] A.S. Ogale and Y. Aloimonos. A roadmap to the integration of early visual modules. International
Journal of Computer Vision, 72(1):9–25, 2007. 47

[38] A.S. Ogale, C. Fermuller, and Y. Aloimonos. Motion segmentation using occlusions. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 27(6):988–992, 2005. 1, 11

[39] N. Paragios and R. Deriche. Geodesic active regions for motion estimation and tracking. In Pro-
ceedings of the Seventh IEEE International Conference on Computer Vision, (ICCV ’99), volume 1,
pages 688–694, 1999. 9

[40] N. Paragios and R. Deriche. Geodesic Active Regions: A New Framework to Deal with Frame
Partition Problems in Computer Vision. Journal of Visual Communication and Image Representation,
13(1-2):249–268, 2002. 9

[41] V.C. Raykar, S. Yu, L.H. Zhao, A. Jerebko, C. Florin, G.H. Valadez, L. Bogoni, and L. Moy. Super-
vised Learning from Multiple Experts: Whom to trust when everyone lies a bit. In Proceedings of
the 26th Annual International Conference on Machine Learning, pages 889–896. ACM, 2009. 14

[42] Ronald A. Rensink and James T. Enns B. Early completion of occluded objects. Vision Research,
38:2489–2505, 1998. 1

[43] M.G. Ross. Exploiting Texture-Motion Duality in Optical Flow and Image Segmentation. Master’s
thesis, Massachusetts Institute of Technology, Aug 2000. 2

[44] D. Scharstein and R. Szeliski. High-accuracy stereo depth maps using structured light. Computer
Vision and Pattern Recognition, IEEE Computer Society Conference on, 1:195, 2003. vii, 55, 56

115

Ahmad Humayun Chapter : BIBLIOGRAPHY

[45] E. Sharon, A. Brandt, and R. Basri. Segmentation and boundary detection using multiscale inten-
sity measurements. In Proceedings of the 2001 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR ’01), volume 1, pages 469–476, 2001. 10

[46] J. Shi and J. Malik. Motion segmentation and tracking using normalized cuts. In Proceedings of the
Sixth IEEE International Conference on Computer Vision, (ICCV ’98), pages 1154–1160, jan 1998.
3, 7, 9

[47] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905, 2000. 9

[48] J. Shi and C. Tomasi. Good features to track. In Proceedings of the 1994 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR ’94), pages 593–600, 1994. 15

[49] C. Stauffer and W.E.L. Grimson. Learning patterns of activity using real-time tracking. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(8):747–757, 2000. 10

[50] A.N. Stein and M. Hebert. Occlusion Boundaries from Motion: Low-Level Detection and Mid-Level
Reasoning. International Journal of Computer Vision, 82(3):325–357, 2009. iii, iv, viii, 5, 12, 13, 51,
53, 54, 55

[51] B. Stenger, T. Woodley, and R. Cipolla. Learning to track with multiple observers. In Proceedings of
the 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’09), pages 2647–
2654, june 2009. 14

[52] C. Strecha, R. Fransens, and L. Van Gool. A probabilistic approach to large displacement optical
flow and occlusion detection. Statistical methods in video processing, pages 71–82, 2004. 1, 47

[53] C. Strecha, R. Fransens, and L. Van Gool. Combined Depth and Outlier Estimation in Multi-View
Stereo. In Proceedings of the 2006 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR ’06), volume 2, pages 2394–2401, 2006. 1, 47

[54] C. Strecha, A.M. Bronstein, M.M. Bronstein, and P. Fua. LDAHash: Improved matching with smaller
descriptors. Technical report, Ecole Polytechnique Fedrale de Lausanne, 2010. iv, 4

[55] D. Sun, S. Roth, and M.J. Black. Secrets of optical flow estimation and their principles. In Proceedings
of the 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’10), pages 2432–
2439, june 2010. 28

[56] E. Tola, V. Lepetit, and P. Fua. Daisy: an Efficient Dense Descriptor Applied to Wide Baseline
Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815–830, May 2010.
1, 47

[57] J.Y.A. Wang and E.H. Adelson. Representing moving images with layers. IEEE Transactions on
Image Processing, 3(5):625–638, Sept. 1994. 11

[58] A. Wedel, T. Pock, C. Zach, H. Bischof, and D. Cremers. An improved algorithm for TV-L1 optical
flow. Statistical and Geometrical Approaches to Visual Motion Analysis, pages 23–45, 2009. 28

[59] M. Werlberger, W. Trobin, T. Pock, A. Wedel, D. Cremers, and H. Bischof. Anisotropic Huber-L1
Optical Flow. In Proceedings of the British Machine Vision Conference (BMVC), September 2009.
28

116

Chapter : BIBLIOGRAPHY Ahmad Humayun

[60] R. Williams, Lance R. Williams, Edward M. Riseman, Steven W. Zucker, W. Richards Adrion,
and Department Head. Perceptual completion of occluded surfaces. Computer Vision and Image
Understanding, 64:1–20, 1994. 1

[61] K.Y. Wong and M.E. Spetsakis. Motion segmentation and tracking. In Proceedings of 15th Interna-
tional Conference on Vision Interface, pages 80–87, 2002. 7, 9

[62] J. Xiao and M. Shah. Motion layer extraction in the presence of occlusion using graph cuts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(10):1644–1659, 2005. 12

[63] Q. Yang, L. Wang, R. Yang, H. Stewenius, and D. Nister. Stereo Matching with Color-Weighted
Correlation, Hierarchical Belief Propagation, and Occlusion Handling. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(3):492–504, mar. 2009. 47

[64] X. Yong, D. Feng, Z. Rongchun, and M. Petrou. Learning-based algorithm selection for image
segmentation. Pattern Recognition Letters, 26(8):1059–1068, 2005. 14

[65] L. Zelnik-Manor, M. Machline, and M. Irani. Multi-body factorization with uncertainty: Revisiting
motion consistency. International Journal of Computer Vision, 68(1):27–41, 2006. 10

[66] C.L. Zitnick, S.B. Kang, M. Uyttendaele, S. Winder, and R. Szeliski. High-quality video view in-
terpolation using a layered representation. ACM Transactions on Graphics, 23(3):600–608, 2004.
11

[67] C.L. Zitnick, S.B. Kang, and N. Jojic. Simultaneous optical flow estimation and image segmentation.
US Patent 7,522,749, Apr 2009. Filed: July 2005. 11

[68] C.W. Zitnick, N. Jojic, and Sing Bing Kang. Consistent segmentation for optical flow estimation. In
Proceedings of the Tenth IEEE International Conference on Computer Vision, (ICCV ’05), volume 2,
pages 1308–1315, oct 2005. vii, 11, 55, 56

117

	Introduction
	Goals
	What is Optical Flow?
	What is an Occlusion?
	Supervised Learning
	Algorithm
	Organization

	Related Work
	Optical Flow
	Motion Segmentation
	Occlusion resolution

	Learning (Feature selection)

	The Occlusion Classification Algorithm
	Learning
	Classification Trees
	Random Forests
	Implementation
	Learning Framework Alternatives

	Feature Set
	Features on Image Properties
	Features based on Optical Flow
	Other Features experimented

	Evaluation / Experiments
	Methodology of Evaluation
	Training Dataset
	Random Forest Evaluation
	Random Forest Parameters
	Random Forest Training Set

	Features
	Final Feature Set

	Cropping out-of-FOV regions
	Effect of Texture
	Using ground-truth flow

	Results
	Results on Sequences with GT
	Comparative results on stein2009occlusion dataset
	Results on Sequences with no GT

	Conclusions and Future Work
	Future Work

	Appendices
	Code Appendix

	Bibliography

