
Chapter 0

Preliminaries

z The following is the truth table for the conditional statements like A ⇒ B which is read as
A only if B, or if A then B - also given is the bi-conditional statement of the form A ⇔ B which
can be read as A if and only if B:

A B A⇒ B A⇐ B A⇔ B
F F T T T
F T T F F
T F F T F
T T T T T

z The 3 tests used to prove A⇒ B are:

1. Direct method: where we start with A, then deduce a chain of various consequences to end
up with B

2. Proof by contraposition: which is based on the equivalence of A⇒ B and B′ ⇒ A′ (A′ is
“not A”). Here we start with B′, and then deduce various consequences to end with A′.

3. Proof by contradiction (or reductio ad absurdum): which is based on the equivalence
of A⇒ B and (A and B′)′. Here we begin with A and B′ and then derive a contradiction

z A set of common symbols in set theory:
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x ∈ X x is an element of X
{x1, x2, x3, . . . } is the set containing the elements x1, x2, x3 and so on
{x : x ∈ R, x > b} the set of all x such that x is real and x is greater than b

X ⊂ Y all elements in set X are also in set Y
X\Y is all element in X not in Y . Note X\Y ⊂ X

f : X → Y f is a function that maps elements in set X into set Y
:= arithmetic assignment; x := y means x becomes y

, equals by definition

z A vector a is said to be a linear combination of vectors a1, a2, . . . , ak, if there are scalars
α1, α2, . . . , αk such that:

a = α1a1 + α2a2 + · · ·+ αkak

z The subspace V of Rn is called subspace of Rn if V is closed under the operations of vector addition
and scalar multiplication. In other words V is a subspace of Rn if v1, v2 ∈ V ⇒ αv1 + βv2 ∈ V.

Every subspace needs to contain the zero vector.

z Let a1, a2, . . . , ak be arbitrary vectors in Rn. The set of vectors which are all the linear combi-
nations of these vectors is called the span:

span[a1, a2, . . . , ak] =
{ k∑
i=1

αiai : αi ∈ R
}

The span of any set of vectors is a subspace. Given a subspace V, a set of linearly independent
vectors {a1, a2, . . . , ak} such that V = span[a1, a2, . . . , ak] is referred to as a basis for V. The number
of these vectors, k, is the dimension of the subspace V.

z The Cofactor of matrix, Cij , is the determinant of the matrix after ignoring the ith row and
jth column:

A =

 1 4 7
3 0 5
−1 9 11

 C23 =

∣∣∣∣ 1 4
−1 9

∣∣∣∣
The Minor of a matrix, Mij , is Mij = (−1)i+jCij .

z Solution for Ax = b only exists if rankA = rank [A|b]. This so because if a non-zero x exists,
then b is simply a linear combination of the column vectors of A (given by x). It follows that then
b belongs to span[a1, a2, . . . , ak]. Hence the rank is equal.
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z The Euclidean inner product is defined as:

〈x,y〉 =

n∑
i=1

xiyi = xTy

z If 〈x,y〉 = 0, x and y are orthogonal.

z The Cauchy-Schwarz Inequality states for any two vectors in Rn:

|〈x,y〉| ≤ ||x|| ||y||

z The Euclidean norm of a vector x (also known as the 2-norm, L2 norm) is given by:

||x|| =
√
〈x,x〉 =

√
xTx

z The family of all vector norms is given by:

||x||p =

{
(|x1|p + |x2|p + · · ·+ |xn|p)1/p if 1 ≤ p <∞
max(|x1|, |x2|, . . . , |xn|) if p =∞

where p ∈ Z. Usually, ||x||1, the 1-norm, is simply written as |x|.

z Matrix A has the eigenvalues λ and nonzero eigenvectors v such that it satisfies Av = λv. λ
can be an eigenvalue if and only if λI−A is singular, i.e.:

det[λI−A] = 0

Attempting to solve this leads us to the characteristic polynomial and characteristic equation
for the matrix A:

det[λI−A] = λn + an−1λ
n−1 + · · ·+ a1λ+ a0 = 0

This will give n roots which would be the eigenvalues of A. The set of eigenvectors are always
linearly independent. Moreover a symmetric matrix will always have orthogonal eigenvectors.

z An orthogonal matrix’ transpose is always its inverse: AT = A−1.

z The orthogonal component of the subspace V of Rn is another subspace V⊥, which would consist
of all the vectors which are orthogonal to every vector in V:

V⊥ = {v′ : ∀v ∈ V , vTv′ = 0}
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Together V and V⊥ span Rn, in the sense that every vector x ∈ Rn can be represented as x = x1 +x2

where x1 ∈ V and x2 ∈ V⊥. This is called the orthogonal decomposition of x with respect to V.

We can also say that Rn is a direct sum of V and V⊥: Rn = V ⊕ V⊥. We say that a linear
transformation P is an orthogonal projector onto V if for all x ∈ Rn, we have Px ∈ V and x−Px ∈
V⊥.

z We define the Range of a matrix as:

RANGE(A) , {Ax : x ∈ Rn}

Remember it is the “reachability” (range) of a matrix. It is actually all possible linear combinations
of the column vectors (hence it is also called the column space).

z We define the Nullspace (kernel) of a matrix as:

NULL(A) , {x ∈ Rn : Ax = 0}

z A Hermitian matrix is a square matrix with complex entries, which is equal to its own conjugate
transpose aij = āji, e.g.: [

3 2 + i
2− i 1

]
Necessary conditions include that the entries on the diagonal need to be real. A real symmetric
matrix is simply a special case of a Hermitian matrix.

z The Quadratic form is a polynomial function which results from a symmetric matrix Q and
any vector x by xTQx, for example:

xTQx =
[
x1x2x3

] 0 1 1
1 3 5
1 5 0

x1

x2

x3

 = 3x2
2 + 2x1x2 + 2x1x3 + 10x2x3︸ ︷︷ ︸

Quadratic form

A Positive definite matrix Q is one where xTQx > 0 for all nonzero vectors x. For a Positive
semi-definite matrix, xTQx ≥ 0. Similarly, we define negative definite and negative semi-definite
matrices.

z The Leading principal minors ∆i are basically the determinants of the upper right i × i
matrix:

∆1 = q11, ∆2 =

∣∣∣∣q11 q12

q21 q22

∣∣∣∣ , ∆3 =

∣∣∣∣∣∣
q11 q12 q13

q21 q22 q23

q31 q32 q33

∣∣∣∣∣∣ , . . . , ∆n =
∣∣Q∣∣
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z The Sylvester’s criterion is a necessary and sufficient condition to determine whether a Her-
mitian matrix is positive definite. It states that such a matrix is positive definite if and only if the
principal minors are all positive: ∆i > 0, i = 1, . . . , n

z Matrix norms can be defined in multiple ways - if they satisfy certain conditions. One of them,
Frobenius norm is defined as:

||A||F =

√√√√ m∑
i=1

n∑
j=1

(aij)2 =

√√√√ m∑
j=1

〈aj , aj〉

z Rayleigh’s Inequality states that an n× n positive definite matrix P follows:

λmin(P)||x||2 ≤ xTPx ≤ λmax(P)||x||2

for any vector x, where λmin(P) and λmax(P) are the smallest and largest eigenvalues of P.

z The line segment between two points x,y ∈ Rn is the set:

{z = αx + (1− α)y : z ∈ Rn, α ∈ [0, 1]}

z A Hyperplane is defined by a non-zero vector u ∈ Rn and a scalar v ∈ R. A hyperplane H can
be defined by all points x ∈ Rn which satisfy the following condition:

H = {x ∈ Rn : uTx = v}

For n = 2 a hyperplane defines a straight line; and when n = 3 it defines a 3D plane. A hyper plane
divides Rn into two half-spaces: the positive half-space (H+{x ∈ Rn : uTx ≥ v}); and the negative
half-space (H−{x ∈ Rn : uTx ≤ v}). If point a is to lie on the hyperplane, it should satisfy the
condition:

〈u,x− a〉 = 0 ⇔ a ∈ H

z As the point z was given between x,y ∈ Rn for defining a line segment, z is said to be a Convex
combination of points x and y.

z A set Θ is a Convex set if for all pairs of points present in the set, their convex combinations also
lie in the set. Such as, all the points on/inside the circle form a convex set; all the points on/inside
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a convex polygon form a convex set. More formally, set Θ is convex if and only if αu+(1−α)v ∈ Θ
for all u,v ∈ Θ and α ∈ (0, 1).

Examples of convex sets include the empty set; a single point; a line or a line segment; a half-space;
a hyperplane; a subspace; Rn.

z A point x in a convex set Θ is said to be an extreme point of Θ if there are no two distinct
points u, and v such that x = αu + (1−α)v for all u,v ∈ Θ for some α ∈ (0, 1). Examples include
points on the circumference of a circular convex set.

z The Neighborhood of a point x ∈ Rn is the set defined as:

{y ∈ Rn : ||y − x|| < ε}, ε > 0

z A point x ∈ S is said to be interior point of the set S, if the set S contains some neighborhood
of x. The set of all interior points of S is known as the interior of S.

z A point x is said to be a boundary point of the set S, if every neighborhood of x contains a
point in S and a point not in S. The set of all boundary points of S is known as the boundary of
S. Note the boundary points may or may not be elements of S (the former set is known as closed
and the latter is called open).

z A set S is bounded if it has finite dimensions. A set S is compact, if it is both closed and
bounded.

z If y is a boundary point of the convex set Θ, a hyperplane passing through y is called the
hyperplane of support of the set Θ, if the entire Θ lies in just one of the two half-spaces of the
hyperplane.

z Since the intersection of any number of convex sets is also convex (remember a half-space is also
a convex set), the intersection of a finite number of half-spaces is also a convex set and is known as
the convex polytope.

z A nonempty, bounded polytope is called a polyhedron. A convex polyhedron can also be defined
algebraically as the set of solutions to a system of linear inequalities.

z A sequence of real numbers is a function whose domain is a set of natural numbers 1, 2, . . . , k, . . .
and whose range is contained in real numbers (f : N→ R). This set can be viewed as a set of real
numbers {x1, x2, . . . , xk, . . . } or simply {xk} or {xk}∞k=1.

6



Chapter 0: Preliminaries Ahmad Humayun

In an increasing sequence xk < xk+1,∀k, and in a non-decreasing sequence xk ≤ xk+1,∀k.
Non-decreasing and non-increasing sequences are called Monotone sequences.

z A number x∗ ∈ R is called the limit of the convergent sequence {xk}:

x∗ = lim
k→∞

xk or more simply xk → x∗

These notions of sequence and limits can be extended to vectors, where the notation {x(k)} for
sequences in Rn is used.

z A Bounded sequence is one for which there exists a number B ≥ 0 such that ||x(k)|| ≤ B for
all k = 1, 2, . . .. To be bounded, the function needs to be bounded above / have an upper bound
(xk ≤ B, ∀k = 1, 2, . . .) and bounded below / have a lower bound (xk ≥ B, ∀k = 1, 2, . . .).
Since B here can be higher (or lower) than what is actually needed to fulfill this condition, the least
upper bound is called the supremum and the greatest lower bound is called the infimum.

Every convergent sequence is bounded, but not vice versa. Example, f : x→ sin(x) is bounded by
1 (supremum) but it is not convergent.

z A sub-sequence is obtained by neglecting 0 or more elements of a given sequence.

z Bolzano-Weierstrass theorem states that each bounded sequence in Rn has a convergent
subsequence.

z We say a sequence {Ak} of m× n matrices converges to the m× n matrix A if:

lim
k→∞

||A−Ak|| = 0

z Differential calculus is based on the idea of approximating an arbitrary function by an affine
function. A function A : Rn → Rm is affine if there exists a linear function f ′ : Rn → Rm and a
vector y ∈ Rm such that:

A(x) = f ′(x) + y

for every x ∈ Rn. Consider a function f : Rn → Rm and a point x0 ∈ Rn. Now we wish to find an
affine function A that approximates f near x0. It turns out the function f : Ω→ Rm, Ω ⊂ Rn is
said to be differentiable at x0 ∈ Ω if there is an affine function that approximates f near x0, that
is, there exists a linear function f ′ : Rn → Rm such that:

lim
x→x0,x∈Ω

||f(x)−
(
f ′(x− x0) + f(x0)

)
||

||x− x0||
= 0

lim
x→x0,x∈Ω

f(x)− f(x0)

x− x0
= f ′(x0)
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The linear function f ′ above is uniquely detemined by f and x0, and is called the derivative of f
at x0. The function f is said to be differentiable on Ω if f has a derivative at every point of its
domain Ω.

z In vector calculus, the Jacobian Matrix is the matrix of all the first order partial derivatives of
a vector valued function. It is an m×n matrix which represents the derivative f ′ of a differentiable
function f : Rn → Rm. The Jacobian Matrix for the derivative of f at x0 is given as:

J(x0) = Df(x0) =
[
∂f
∂x1

(x0) · · · ∂f
∂xn

(x0)
]

=


∂f1
∂x1

(x0) · · · ∂f1
∂xn

(x0)
...

. . .
...

∂fm
∂x1

(x0) · · · ∂fm
∂xn

(x0)

 =

∇f1(x0)T

...
∇fm(x0)T


The meaning of ∇f is right below.

Example: The Jacobian Matrix of the function f : R3 → R4 with the components:

y1 = x1

y2 = 5x3

y3 = 4x2
2 − 2x3

y4 = x3 sin(x1)

is:

J(x) =


∂y1
∂x1

∂y1
∂x2

∂y1
∂x3

∂y2
∂x1

∂y2
∂x2

∂y2
∂x3

∂y3
∂x1

∂y3
∂x2

∂y3
∂x3

∂y4
∂x1

∂y4
∂x2

∂y4
∂x3

 =


1 0 0
0 0 5
0 8x2 −2

x3 cos(x1) 0 sin(x1)



z The Gradient of f : Rn → R is defined to be the vector field whose components are the partial
derivatives of f :

∇f(x) =


∂f
∂x1

(x)
...

∂f
∂xn

(x)

 = Df(x)T

Example: The gradient of the function in Cartesian coordinates:

f(x) = 2x1 + 3x2
2 + sin(x3)

∇f(x) =
[
∂f
∂x1

∂f
∂x2

∂f
∂x3

]T
=
[
2 6x2 − cos(x3)

]T
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z Given f : Rn → R, and if∇f is differentiable, the Hessian Matrix gives the second-order partial
derivatives of a function; that is it describes the local curvature of a function of many variables:

Hf (x) = D2f(x) =


∂2f
∂x2

1

∂2f
∂x1∂x2

· · · ∂2f
∂x1∂xn

∂2f
∂x2∂x1

∂2f
∂x2

2
· · · ∂2f

∂x2∂xn

...
...

. . .
...

∂2f
∂xn∂x1

∂2f
∂xn∂x2

· · · ∂2f
∂x2

n


Note that the Hessian Matrix of a function at x is symmetric if f is twice continuously differentiable
at x.

Example:

f(x) = 5xy3 − 20y2z4

∇f(x) =
[
5y3 15xy2 − 40yz4 −80y2z3

]T
D2f(x) =

 0 15y2 0
15y2 30xy − 40z4 −160yz3

0 −160yz3 −240y2z2



z The level set of a function f : Rn → R at level c is the set of points:

S = {x : f(x) = c}

For f : R2 → R, we are usually interested in S when it is a curve. For f : R3 → R, the sets S most
often are considered as surfaces.

To say that a point x0 is on the level set S at level c means f(x0) = c.

z The vector ∇f(x0) is orthogonal to the tangent vector v of an arbitrary smooth curve passing
through x0 on the level set determined by f(x) = f(x0). A point a would lie on this v if:

∇f(x0)T(a− x0) = 0 if ∇f(x0) 6= 0

z Assume that a function f : R → R is m times continuously differentiable on an interval [a, x].
Then the Taylor Series is given as:

f(x) = f(a) +
x− a

1!
f (1)(a) +

(x− a)2

2!
f (2)(a) + · · ·

· · ·+ (x− a)m−1

(m− 1)!
f (m−1)(a) +

(x− a)m

m!
f (m)(a+ θ′(x− a))︸ ︷︷ ︸

remainder Rm
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where f (n) is the nth derivative of f . In case the function was continuously differentiable infinite
times then we can summarize the Taylor Series as:

f(x) =

∞∑
n=0

(x− a)n

n!
f (n)(a)

Usually a finite number of terms of the Taylor series are used to estimate the actual function.

z A unimodal function is one which has a value m for which it is monotonically decreas-
ing/increasing for x ≤ m and monotonically increasing/decreasing for x ≥ m. It would only have
one minima/maxima (one trough/peak)
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Chapter 1

Basic techniques for
Unconstrained Optimization

1.1 Conditions for Unconstrained Optimization

z Usually optimization problems are stated as minimization of a function f(x) subject to x ∈ Ω.
The function f : Rn → R is usually called as the Objective function or cost function. The
variables in the vector x ∈ Rn are often called the decision variables. The set Ω is a subset of Rn
and is called the constraint set or feasible set.

The goal of optimization is to find the “best” vector x from all possible vectors in Ω. By the “best”
vector we mean the one that results in the smallest value of the objective function.

z The Ω is said to be a set constraint. There are other constraints such as functional con-
straints where, for example, Ω = {x : h(x) = 0, g(x) ≤ 0}, where h and g are the constraint
functions.

z Remember maximization of f is equivalent to minimization of −f .

z Local Minimizer/Minimum for a real valued function f : Rn → R defined on some Ω ∈ Rn,
is the point x∗ ∈ Ω if there exists an ε such that f(x) ≥ f(x∗) ∀x ∈ Ω\{x∗} and ||x− x∗|| < ε i.e.
it could exist in any trough on the function.
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z Global Minimizer/Minimum for a real valued function f : Rn → R defined on some Ω ∈ Rn,
is the point x∗ ∈ Ω such that f(x) ≥ f(x∗) ∀x ∈ Ω\{x∗} i.e. should be minimum value the
function takes in Ω, arg minx∈Ω f(x).

z Changing the signs in the above definitions from ≥ to > gives strict local minimizer and
strict global minimizer.

z If x is on the boundary of Ω, a d is a feasible direction at x if there exists α0 > 0 such that
x + αd ∈ Ω for all α ∈ [0, α0].

Given an x and d, and ||d|| = 1, then 〈d,∇f(x)〉 is the rate of increase of f at the point x in the
direction d. This can also be written as:

dT∇f(x) =
∂f

∂d
(x)

i.e. it is the directional derivative of f in the direction d

z Given a function f whose first order differential exists on Ω ⊂ Rn, and x∗ is a local minimizer
of f over Ω at the boundary, then for any feasible direction d at x∗, the First-Order Necessary
Condition states that:

dT∇f(x∗) ≥ 0

In case x∗ is a local minimizer and is an interior point of Ω, then:

∇f(x∗) = 0

A critical point (or stationary point) for a function f(x) is the point x∗ which satisfies one of the
following conditions:

1. ∇f(x∗) = ~0

2. If the partial derivative of f(x∗) with respect to any of its variables doesn’t exist (equivalent
to saying if ∇f(x∗) is not defined for one of its rows).

Note that a minimizer is a critical point, but a critical point is not always a minimizer. A point
having the latter condition is a saddle point.

z Given a function f whose second order differential exists on Ω ⊂ Rn, and x∗ is a local minimizer of
f over Ω at the boundary, and d is a feasible direction at x∗. If ∇f(x∗)Td ≥ 0, the Second-Order
Necessary Condition states that:

dTHf (x∗)d ≥ 0

In case x∗ is a local minimizer and is an interior point of Ω, and ∇f(x∗) = 0, then:

dTHf (x∗)d ≥ 0
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for all d ∈ Rn, i.e. Hf (x∗) would be positive semidefinite.

z Both First-Order and Second-Order Necessary Conditions are necessary for locating a minimizer
but not sufficient.

Example: The function f(x) = x3, f : R → R. Since f ′(0) = 0 and f ′′(0) = 0, the point x = 0
satisfies both First-Order and Second-Order Necessary Conditions. However plotting this function
shows x = 0 is just an inflexion point.

z To impose a sufficient condition (for the interior case), we introduce the Second-Order Suffi-
cient Condition, which simply builds on top Second-Order Necessary Condition by imposing that
the Hf (x∗) be a positive definite matrix.

1.2 One Dimensional search methods

z Golden Search method is a method to search for a minimizer for a unimodal function f : R→
R over a closed interval [a0, b0]. The position where the function is evaluated is given by ρ < 1

2 .
Each iteration in the algorithm has the following steps (total N iterations):

1. Compute an = an−1 + ρ(bn−1 − an−1)

2. Compute bn = an−1 + (1− ρ)(bn−1 − an−1)

3. Compute f(an) and f(bn)

4. (a) If f(an) ≤ f(bn), set an := an−1

(b) If f(an) ≥ f(bn), set bn := bn−1

This would save processing either an or bn in the next step.

5. n := n+ 1

To make the switch in step 4 plausible, ρ = 3−
√

5
2 . The rate of reduction in uncertainty of finding

the minima is (1− ρ)N .

z Fibonacci Search method having a new value for ρ in each iteration given as 0 ≥ ρk ≥ 1
2 .

Here the ρk+1 = 1− ρk
1−ρk . It turns out (through optimization of ρ itself) that the set of ρk values
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that result in the highest reduction of uncertainty is:

ρ1 = 1− FN
FN+1

ρ2 = 1− FN−1

FN
...

ρN = 1− F1

F2

where Fk are Fibonacci numbers (F1 = 1, F2 = 2, F3 = 3, F4 = 5, . . .). The same steps are followed
in each iteration of Golden Search method, except that the ρ in each stage is set to ρk where k is
the iteration number.

To make the switch in step 4 plausible, ρ = 3−
√

5
2 . The rate of reduction in uncertainty of finding

the minima is (1− ρ1)(1− ρ2) . . . (1− ρN ) = 1+2ε
FN+1

. The ε is there to enforce ρN > 1
2 , otherwise the

last iteration will choose the same two points i.e. we will have the condition aN = bN .

z Unlike the two methods above, in Newton’s method we suppose that we can also calculate
f ′(x(k)), f ′′(x(k)) apart from f(x(k)) at each measurement point x(k) (in the above two methods,
we explicitly denoted x(k) as ak and bk). The idea is to fit a quadratic function through x(k) that
matches its first and second derivatives of function f :

q(x) = f(x(k)) + f ′(x(k))(x− x(k)) +
1

2
f ′′(x(k))(x− x(k))2

Now the first-order necessary condition for a minimizer of q states:

0 = q′(x) = f ′(x(k)) + f ′′(x(k))(x− x(k))

Now setting x = x(k+1), we get (since g′(x(k)) = f ′(x(k)) from the initial q(x) equation):

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))

Hence we solve the next step using x(k+1). Essentially in each iteration we just need to compute
the last equation!

Using Second-Order Sufficient Condition, we can say x(k+1) is approximately a strict minimizer if
f ′′(x(k)) > 0. If f ′′(x(k)) < 0 for some x, Newton’s method may fail to converge to the minimizer.

z Newton’s method for finding the minimizer has come out of Newton’s method of tangents
which is used to find roots:

x(k+1) = x(k) − f(x(k))

f ′(x(k))
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This is equal to taking x(k+1) as to the x-intercept of the tangent line at x(k). But for this to work
the initial condition/x should be close to the true root - if the first approximation to the root is

such that the ratio f(x(0))
f ′(x(0))

is not small enough then Newton’s method of tangents might fail.

z The Secant method for finding the minimizer says that the second derivative of f with respect
to x can be estimated as:

f ′′(x(k)) =
f ′(x(k))− f ′(x(k−1))

x(k) − x(k−1)

Using this approximation, we can replace the second derivative in Newton’s Method. This gives:

x(k+1) = x(k) − x(k) − x(k−1)

f ′(x(k))− f ′(x(k−1))
f ′(x(k))

This is the iterative step for the Secant method. This is equivalent to selecting x(k+1) as the x-
intercept of the line that joins x(k−1) and x(k). Note that to solve this we need two initial conditions:
x(−1) and x(0).

z Usually all iterative algorithms which wish to minimize f : Rn → R are of the form:

x(k+1) = x(k) + αkd
(k)

where αk ≥ 0 is chosen to minimize φk(α) = f(x(k) +αkd
(k)), where the vector d is the search direc-

tion. Note that the choice of αk involves a one dimensional minimization, which under appropriate
conditions produces:

f(x(k+1)) < f(x(k))
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Chapter 2

Multivariate Optimization

2.1 Gradient Methods

z As a reminder, x0 belongs to the level set c if f(x0) = c. The gradient of f at x0 is denoted
by ∇f(x0), which if not a zero vector, is orthogonal to the tangent vector to an arbitrary smooth
curve passing through x0 on the level set f(x0) = c.

Thus, the direction of maximum rate of increase of a real-valued function orthogonal to the level
set of the function through x0 is the gradient ∇f(x0). In other words, the gradient acts in such a
direction that for a small displacement, the function f increases more in the direction of the gradient
than in any other direction. A direct corollary of this fact is that −∇f(x0) would be in the direction
of the maximum rate of decrease. See the Figure 2.1.

z Following the point above, if ∇f(x(0)) 6= 0, then for a sufficiently small α > 0, we can say:

f(x(0) − α∇f(x(0))) < f(x(0))

i.e. −∇f(x(0)) is the right direction to search for the minimizer. This would be our starting point
for gradient based methods.

z The Gradient Descent Algorithm states: given a step size αk, we can iterate by:

x(k+1) = x(k) − αk∇f(x(k))

As we approach the minimizer, the gradient would tend to 0:

lim
x(k)→x∗

∇f(x(k)) = 0

16
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Figure 2.1: Constructing a level set corresponding to level c for f

For the options on the step size αk we can:

1. Take very small steps: this is quite slow, because potentially it will require a large number of
steps.

2. Take very large steps: will result in a large zig zag path to the minimizer (because there is a
potential of over-shooting the minimizer).

z So now the question is of choosing the right step-size αk. This is what the Steepest Descent
algorithm exactly tries to do where it tries to optimize the step size itself:

αk = arg min
α≥0

f(x(k) − α∇f(x(k))) = arg min
α≥0

φk(α)

So on each step, a line search is performed in the direction −∇f(x(k)) until a minimizer x(k+1) is
found. Note in Figure 2.2 that each step direction chosen is orthogonal to the last one. This is
proved by:

x(k+1) = x(k) − αk∇f(x(k))

x(k+2) = x(k+1) − αk+1∇f(x(k+1))

〈x(k+1) − x(k),x(k+2) − x(k+1)〉 = αkαk+1〈∇f(x(k)),∇f(x(k+1))〉

To prove this we will just show: αkαk+1〈∇f(x(k)),∇f(x(k+1))〉 = 0. Using the First-Order Neces-

17
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Figure 2.2: Typical 3 iterations in the steepest descent method

sary Condition on φk(αk):

0 = f ′(x(k) − αk∇f(x(k))) =
dφk(αk)

dα

= ∇f(x(k) − αk∇f(x(k)))T(−∇f(x(k)))

= ∇f(x(k+1))T(−∇f(x(k)))

= −〈∇f(x(k+1)),∇f(x(k))〉

The intuitive idea behind this (by looking at Figure 2.2) is that x(k+1) is the minimum value found
while doing a line search in the direction of −∇f(x(k)), and this value would only be the minimum
if the next direction of search, −∇f(x(k+1)), is orthogonal to the previous search direction.

z Example: Given the function:

f(x) = (x1 − 4)4 + (x2 − 3)2 + 4(x3 + 5)4

and the initial point x(0) =
[
4 2 −1

]T
First let us find the gradient direction:

∇f(x) =

 4(x1 − 4)3

2(x2 − 3)
16(x3 + 5)3


Now we compute a formula for φ0(α0) (the objective function for finding the step size):

φ0(α0) = f(x(0) − α0∇f(x(0)))

= f
( [

4 2 −1
]T − α0

[
0 −2 1024

]T )
= (4− 4)4 + ((2 + 2α0)− 3)2 + 4((−1− 1024α0) + 5)4

= (2α0 − 1)2 + 4(4− 1024α0)4

18
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To find the minimizer for φ0(α0) we can use any line search method. Let us use, Newton’s Method :

φ′0(α(k)) = 4(2α(k) − 1)− 214(4− 1024α(k))

= 16777224α(k) − 65540

φ′′0(α(k)) = 16777224

Choosing α(0) = 1:

α(1) = α(0) − φ′0(α(0))

φ′′0(α(0))
= 1− φ′0(1)

φ′′0(1)
= 1− φ′0(16777224(1)− 65540)

16777224
= 3.9× 10−3

α(2) = α(1) − φ′0(α(1))

φ′′0(α(1))
= 3.9× 10−3 − φ′0(3.9× 10−3)

φ′′0(3.9× 10−3)
= 3.9× 10−3

Hence, αk = 3.906× 10−3 seems to have converged. Now using this as our step size:

x(1) = x(0) − α0∇f(x(1))

=
[
4 2 −1

]T − 3.906× 10−3
[
0 −2 1024

]T
x(1) =

[
4.0000 2.0078 −5.0002

]T
This was the whole first step. Successive steps would proceed similarly.

z A number of different stopping criterion can be adopted:

1. The most näıve one is: ∇f(x(k)) = 0.

2. A more practical one: ||∇f(x(k))|| < τ

3. By computing the absolute difference of the objective function from two consecutive iterations:
|f(x(k+1))− f(x(k))| < ε

4. Also we can check if we are even moving: ||x(k+1) − x(k)|| < ε

5. To make the last two scale independent we have:

|f(x(k+1))− f(x(k))|
|f(x(k))|

< ε

||x(k+1) − x(k)||
||x(k)||

< ε

z For a quadratic function as follows, how does steepest descent work:

f(x) =
1

2
xTQx− bTx
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where Q ∈ Rn×n is a symmetric positive definite matrix1, b ∈ Rn and x ∈ Rn. We can also say:

∇f(x) = Qx− b

Now following the same method in steepest descent we use the to have:

αk = arg min
α≥0

φk(α)

= arg min
α≥0

f(x(k) − α∇f(x(k)))

= arg min
α≥0

(
1

2
(x(k) − α∇f(x(k)))TQ(x(k) − α∇f(x(k)))− bT(x(k) − α∇f(x(k)))

)
Now using the First-Order Necessary Constraint and setting φ′k(α) = 0, we can get the exact step
size αk:

αk =
∇f(x(k))T∇f(x(k))

∇f(x(k))TQ∇f(x(k))

Now, of course, the iterations would be as follows:

x(k+1) = x(k) − αk∇f(x(k))

where:
∇f(x(k)) = Qx(k) − b

z In the quadratic case (above), if you are forced to choose a fixed step size α, it can be proved
that the x(k) will converge to a minimizer if we choose:

0 < α <
2

λmax(Q)

2.2 Newton’s Method

z Newton’s Method (Newton-Raphson Method) was explained before as a line search method.
Nonetheless it can be also used as a method for minimizing a multivariate function. As explained

1This method can also be applied to non-symmetric matrix A because (remember xTATx = xTAx) :

xTAx =
1

2
xTAx+

1

2
xTATx

=
1

2
xT(A+AT)x

=
1

2
xTQx

20
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before, given a starting point, Newton’s method constructs a quadratic approximation to the objec-
tive function that matches the first and second derivative values at that point. It then minimizes the
approximate (quadratic) function instead of the original objective function. We use the minimizer
of the approximate function in this step as the starting point in the next step and this procedure
repeated iteratively:

f(x) ≈ q(x) , f(x(k)) + (x− x(k))T∇f(x(k)) +
1

2
(x− x(k))THf (x(k))(x− x(k))

You should note that if the objective function is quadratic, then the approximation is exact, and
the minimizer is reached in a single step. On the other hand if it is not quadratic, the minimizer
reached is only crude approximation of the actual minimizer. The First-Order Necessary Condition
leads to the following function

x(k+1) = x(k) −Hf (x(k))−1∇f(x(k))

For Newton’s Method to converge at a minimizer, the Hessian should be positive definite at each
step Hf (x(k)) > 0. This is a necessary but not a sufficient condition - the method can still fail if
the starting point is far-away.

z Example: Minimize the following (Powell) function:

f(x) = (x1 + 10x2)2 + 5(x3 − x4)2 + (x2 − 2x3)4 + 10(x1 − x4)4

given the starting point x(0) =
[
5 −2 0 1

]T
Now first need to find the gradient vector:

∇f(x) =


2(x1 + 10x2) + 40(x1 − x4)3

20(x1 + 10x2) + 4(x2 − 2x3)3

10(x3 − x4)− 8(x2 − 2x3)3

−10(x3 − x4)− 40(x1 − x4)3


From the gradient vector, we also need to find the Hessian matrix:

Hf (x) =


2 + 120(x1 − x4)2 20 0 −120(x1 − x4)2

20 200 + 12(x2 − 2x3)2 −24(x2 − 2x3)2 0
0 −24(x2 − 2x3)2 10 + 48(x2 − 2x3)2 −10

−120(x1 − x4)2 0 −10 10 + 120(x1 − x4)2


Note that f(x(0)) = 2806
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Step 1 :

x(1) = x(0) −Hf (x(0))−1∇f(0(k))

=


5
−2
0
1

−


1922 20 0 −1920
20 248 −96 0
0 −96 202 −10

−1920 0 −10 1930


−1 

2530
−332

54
2550


=
[
3.175 −0.318 0.508 0.508

]T
Note that now f(x(1)) = 508.8

Step 2 :

x(2) = x(1) −Hf (x(1))−1∇f(1(k))

=


3.175
−0.318
0.508
0.508

−


855.3 20.0 0.0 −853.3
20.0 221.3 −42.7 0.0
0.0 −42.7 95.3 −10.
−853.3 0.0 −10.0 863.3


−1 

758.5
−9.5
19.0
−758.5


=
[
2.116 −0.212 0.339 0.339

]T
Note that now f(x(2)) = 100.5

Step 3 : Following the same steps, we have

x(3) =
[
1.411 −0.141 0.226 0.226

]T
and f(x(3)) = 19.85.

z It was stated before that even the condition Hf (x(k)) > 0 doesn’t guarantee Newton’s method
being a descent method i.e. it is still possible to have the condition f(x(k+1)) ≥ f(x(k)). But, it
can be proved that there always exists 0 < α < K (where K is some constant) that:

f(x(k) + αd(k)) < f(x(k))

where d(k) = −Hf (x(k))−1∇f(x(k)). Hence, to enforce the descent property in Newton’s method
we make this change to Newton’s method:

x(k+1) = x(k) − αkHf (x(k))−1∇f(x(k))

where αk:

x(k+1) = arg min
α≥0

f
(
x(k) − αkHf (x(k))−1∇f(x(k))

)
Hence at each iteration, we need to first do a line search in the direction of d(k) = −Hf (x(k))−1∇f(x(k))
to find αk. Then we use the αk to find the minimizer for the step, x(k+1). With this adjustment,
Newton’s method will always have the descent property as long as ∇f(x(k)) 6= 0 and Hf (x(k)) > 0.

22



Chapter 2: Multivariate Optimization Ahmad Humayun

z In case Hf (x(k)) ≤ 0, then the search direction d(k) may not point in the descent direction.
This calls for Levenberg-Marquardt modification to Newton’s method, which aims to make Hf

positive definite. Remember that for a matrix being positive definite is equivalent to having positive
eigenvalues. Also note that any semi-negative definite matrix M , M + µI will be positive definite if
µ+ λi > 0 for all eigenvalues λi of M . Hence:

x(k+1) = x(k) − αk
(
Hf (x(k)) + µkI

)−1

∇f(x(k))

will ensure that Newton’s method has the descent property even if Hf (x(k)) is a semi-negative
definite matrix, as long as µ + λi > 0 for all eigenvalues of Hf . As µk → ∞, the algorithm
approaches a pure gradient method with a small step size; and, of course, as µk → 0 the algorithm
becomes a pure Newton’s method.

z Consider solving the problem:

minimize

m∑
i=1

(fi(x))
2

where fi : Rn → R, i = 1, . . . ,m are given non-linear functions. This is called the non-linear least
squares problem.

z Newton’s method can be adjusted to solve the non-linear least squares problem. Given that

our non-linear set of functions are f =
[
f1 . . . fm

]T
, we can write the objective function as

F(x) = f(x)Tf(x). Now we need to first compute the gradient and the hessian of the objective
function. The gradient will be:

(∇F(x))j = 2

m∑
i=1

fi(x)
∂fi(x)

∂xj

∇F(x) = 2J(x)Tf(x)

where j in the first equation denotes the jth component of the gradient and the Jacobian matrix is:

J(x) =


∂f1(x)
∂x1

· · · ∂f1(x)
∂xn

...
. . .

...
∂fm(x)
∂x1

· · · ∂fm(x)
∂xn


Now computing the (k, j)th component of the Hessian:

∂2F(x) =
∂

∂xk
(∇F(x))j

= 2

m∑
i=1

(
∂fi(x)

∂xk

∂fi(x)

∂xj
+ fi(x)

∂2fi(x)

∂xk∂xj

)
Letting S(x) be the matrix whose (k, j)th component is:

fi(x)
∂2fi(x)

∂xk∂xj
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we write the Hessian matrix as:

HF(x) = 2(J(x)TJ(x) + S(x))

Now the Newton’s method for non-linear least squares can be written as:

x(k+1) = x(k) −
(
J(x(k))TJ(x(k)) + S(x(k))

)−1

J(x(k))Tf(x(k))

Sometimes the second derivative components can be ignored because they have little effect. This
reduces the above Newton’s Method to Gauss-Newton method:

x(k+1) = x(k) −
(
J(x(k))TJ(x(k))

)−1

J(x(k))Tf(x(k))

Of course, if J(x)TJ(x) is not positive definite, the Levenberg-Marquardt modification can be ap-
plied!

2.3 Conjugate Direction Method

z Some advantages of conjugate gradient methods:

1. Solves quadratics of n variables in n steps.

2. The conjugate gradient algorithm requires no Hessian Matrix evaluations.

3. No matrix inversion and no storage of an n× n matrix required.

z For an n×n real symmetric matrix Q, the best direction of search is the Q-conjugate direction.
The directions d(0),d(1), . . . ,d(m) are Q-conjugate if, for all i 6= j, we have d(i)TQd(j) = 0. These
conjugate directions are always linearly independent and their ordering, of course, does not matter.

z The Conjugate direction algorithm is used to find a solution to the general Ax = b problem.
This is done by minimizing the following quadratic function of n variables (note that ∇f(x) = 0 ⇔
Qx = b):

f(x) =
1

2
xTQx− xTb (2.1)

here x ∈ Rn and Q is symmetric positive definite. Given the starting point x(0), and Q-conjugate
directions d(0),d(1), . . . ,d(m), the kth iteration in the algorithm is:

∇f(x(k)) = Qx(k) − b

αk = −
(
∇f(x(k))

)T
d(k)

d(k)TQd(k)

x(k+1) = x(k) + αkd
(k)
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It can also be proved that for every step:(
∇f(x(k+1))

)T

d(i) = 0 (2.2)

where 0 ≤ i ≤ k ≤ n− 1 where n are the total number of iterations / equations.

z Its important to note that given a function f(x), when converted to the form given in Equation
2.1, the matrix Q is essentially the Hessian matrix for f(x). Also the vector b is just the negative
of all the first order terms.

z Example: Solve: [
4 2
2 2

]
x =

[
−1
1

]
given x(0) =

[
0 0

]T
, and Q-conjugate directions d(0) =

[
−3/8 3/4

]T
and d(1) =

[
1 0

]T
Since the matrix Q solves 2 linear equations, the system will be solved in 2 steps using the conjugate
gradient algorithm - each step using one of the two Q-conjugate directions given:

Step 1 :

∇f(x(0)) = Qx(0) − b

=

[
4 2
2 2

] [
0
0

]
−
[
−1
1

]
=

[
1
−1

]

α0 = −
(
∇f(x(0))

)T
d(0)

d(0)TQd(0)

= −

[
1 −1

] [−3/8
3/4

]
[
−3/8 3/4

] [4 2
2 2

] [
−3/8
3/4

] = 2

x(1) = x(0) + α0d
(0)

=

[
0
0

]
+ 2

[
−3/8
3/4

]
=

[
−3/4
3/2

]

Step 2 :

∇f(x(1)) = Qx(1) − b

=

[
4 2
2 2

] [
−3/4
3/2

]
−
[
−1
1

]
=

[
1

1/2

]

α0 = −
(
∇f(x(1))

)T
d(1)

d(1)TQd(1)

= −

[
1 1/2

] [1
0

]
[
1 0

] [4 2
2 2

] [
1
0

] = −1/4

x(2) = x(1) + α0d
(1)

=

[
−3/4
3/2

]
− 1/4

[
1
0

]
=

[
−1
3/2

]

z You might have noticed that the conjugate direction algorithm needs to be input Q-conjugate
directions. The Conjugate Gradient algorithm is essentially a way to generate these direction
iteratively. At each stage of the algorithm, the direction is calculated as a linear combination of
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the previous direction and the current gradient, in such a way that all directions are mutually
Q-conjugate.

The first search direction in the conjugate gradient algorithm is the direction of the steepest descent:

d(0) = −∇f(x(0)

As before, the step size on every iteration is:

αk = −
(
∇f(x(k))

)T
d(k)

d(k)TQd(k)

Now how to find the Q-conjugate direction for the kth step:

d(k+1) = −∇f(x(k+1)) + βkd
k

where the coefficient βk is chosen in a way that d(k+1) is Q-conjugate to d(0),d(1), . . . ,d(k):

βk =

(
∇f(x(k+1))

)T
Qd(k)

d(k)TQd(k)

z The conjugate gradient algorithm can be computed with the following steps:

1. given x(0)

2. k := 0

3. d(0) = −∇f(x(0))

4. while ∇f(x(k)) 6= 0

5. αk = − (∇f(x(k)))
T
d(k)

d(k)TQd(k)

6. x(k+1) = x(k) + αkd
(k)

7. βk =
(∇f(x(k+1)))

T
Qd(k)

d(k)TQd(k)

8. d(k+1) = −∇f(x(k+1)) + βkd
(k)

9. k := k + 1

Note that when ∇f(x(k)) = 0, that kth iteration’s Q-conjugate direction, d(k) is invalid (the last
iteration’s Q-conjugate direction will be invalid).

z Now what if we need to minimize a non-quadratic nonlinear function? The conjugate gradient
algorithm can be extended to general nonlinear functions by interpreting f(x) = 1

2xTQx − xTb
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as a second-order Taylor series approximation of the objective function. Near the solution such
functions behave approximately as quadratics as suggested by the Taylor series expansion.

One problem with using this conjugate gradient algorithm for non-linear functions is that the Hessian
Q matrix will not always be a constant. It might have terms which need to be evaluated on every
iteration. This is inefficient. Note that Q is only present in the computation of αk and βk. αk is
simply the step size, so the step 6 of the algorithm can be replaced by any line search method. So
we only need to replace Q in βk:

βk =

(
∇f(x(k+1))

)T
Qd(k)

d(k)TQd(k)

z There are three methods to replace βk:

1. Hestenes-Stiefel formula, replaces Qd(k):

Qd(k) =
(
∇f(x(k+1))−∇f(x(k))

)
/αk

So we now have:

βk =
∇f(x(k+1))T

[
∇f(x(k+1))−∇f(x(k))

]
d(k)T

[
∇f(x(k+1))−∇f(x(k))

]
2. Polak-Ribiére formula uses Equation 2.2 to reach this formula:

βk =
∇f(x(k+1))T

[
∇f(x(k+1))−∇f(x(k))

]
∇f(x(k))T∇f(x(k))

3. Fletcher-Reeves formula expands the numerator and applies Equation 2.2:

βk =
∇f(x(k+1))T∇f(x(k+1))

∇f(x(k))T∇f(x(k))
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Constrained Optimization

z The constrained optimization problems in this section can be formulated as:

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0

where x ∈ Rn and f : Rn → R. Also h and g are just a set of functions such that hi : Rn →
R, i = 1, . . . ,m and gj : Rn → R, j = 1, . . . , p respectively. In short we can say h : Rn → Rm
and g : Rn → Rp. Also m ≤ n

z Any point x∗ satisfying the constraints is called feasible point. Hence the feasible set is:

{x∗ ∈ Rn : h(x∗) = 0, g(x∗) ≤ 0}

z A point x∗ satisfying the constraints hi(x
∗) = 0, . . . , hm(x∗) = 0 is said to be a regular point

of the constraints if the gradient vectors ∇hi(x∗), . . . ,∇hm(x∗) are linearly independent. i.e. x∗ is
a regular point iff the rank of the Jacobian matrix Jh(x∗) is m (in other words all rows of Jh(x∗)
are linearly independent).

Also the constraints hi(x) = 0, . . . , hm(x) = 0 describe a surface S:

S = {x ∈ Rn : hi(x) = 0, . . . , hm(x) = 0}

If the points on S are regular then the dimension of the surface is n−m.
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z A curve C = {x(t) ∈ S : t ∈ (a, b)} as the path traversed by a point x traveling on the surface
S. The position of the point at time t is given by x(t). Note that x(t) is just a parameterization
of x with t. Of course, the curve is differentiable if dx(t)/dt exists. The first differential is usually
denoted as ẋ(t); and second differential as ẍ(t). Note that ẋ(t∗) is tangent to the curve C at x(t∗)

z The Tangent Space at a point x∗ on the surface S = {x ∈ Rn : h(x) = 0} is the set of vectors:

T (x∗) = {y : Jh(x∗)y = 0}

i.e. tangent space is the null space of the Jacobian matrix at x∗. In other words, the tangent space
at a point x∗ on the surface is the collection of all the tangent vectors to the surface at that point.

A tangent space passing through x∗ is also known as the Tangent plane.

Example: Given the surface:

S = {x ∈ R3 : h1(x) = x1 = 0, h2(x) = x1 − x2 = 0}

We have the following Jacobian:

Jh(x) =

[
1 0 0
1 −1 0

]
Since Jh(x) is full rank at any x ∈ S, all points are regular. Hence the tangent space can be
computed as (just the null space):

T (x) = {y : Jh(x)y = 0} = {
[
0 0 α

]T
: α ∈ R}

z The Normal Space at a point x∗ on the surface S = {x ∈ Rn : h(x) = 0} is the set of vectors:

N(x∗) = {x ∈ Rn, z ∈ Rm : y = Jh(x∗)Tz = 0}

i.e. normal space is the range of the transpose Jacobian matrix at x∗. Also note that N(x∗) is
the subspace of Rn spanned by the vectors ∇h1(x∗), . . . ,∇hm(x∗). Moreover the normal space also
contains the zero vector. If x∗ is a regular point, the dimension of the normal space is m.

z Tangent Space and the Normal Space are orthogonal subspaces:

T (x∗) = N(x∗)⊥ T (x∗)⊥ = N(x∗)

z Note that the vectors ∇h(x∗) and ∇f(x∗) are parallel, i.e. ∇f(x∗) is just a scalar multiple of
∇h(x∗). This is where Lagrange’s theorem comes from. It provides the First-order necessary
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condition (introduced in Chapter 1) for a point to be a local minimizer in a constrained condition.
It states that if regular point, x∗ is a local minimizer (or maximizer) of f : Rn → R, subject to the
constraint h(x) = 0, h : Rn → Rm, and m ≤ n, then there exists a λ∗ ∈ Rm such that:

∇f(x∗) + λ∗TJh(x∗) = 0T

λ∗ is the Lagrange multiplier vector, and its components are the Lagrange multipliers. This
whole theorem states that if x∗ is a minimizer (or a maximizer), then the gradient of the objective
function f can be expressed as a linear combination of the gradients of the constraints. Also observe
that x∗ can only be an extremizer if ∇f(x∗) ∈ N(x∗).

z The Lagrangian function illustrates the same idea:

l(x,λ) , f(x) + λTh(x) = f(x) + λ1h1(x) + · · ·+ λmhm(x) (3.1)

Given this, a local extremizer can be represented as:

Jl(x
∗,λ∗) = 0T

This gives the following Lagrange conditions which can be solved to get the extremizer:

Jlx(x,λ) = 0T

Jlλ(x,λ) = 0T

Example: Consider the problem of finding the extremizer for the objective function:

f(x) = x2
1 + x2

2

on the ellipse (the constraint):

{x ∈ R2 : h(x) = x2
1 + 2x2

2 − 1 = 0}
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using Lagrangian function :

l(x,λ) , f(x) + λTh(x)

= x2
1 + x2

2 + λ(x2
1 + 2x2

2 − 1)

Computing the two conditions we have:

Jlx(x,λ) = 0T[
2x1 + 2λx1

2x2 + 4λx2

]
= 0T

2x1(1 + λ) = 0 (3.2)

2x2(1 + 2λ) = 0 (3.3)

Jlλ(x,λ) = 0T[
x2

1 + 2x2
2 − 1

]
= 0T

x2
1 + 2x2

2 = 1 (3.4)

From Eq. 3.2 we have the following possibilities:

x1 = 0 or λ = −1

Using x1 = 0 and replacing it in Eq. 3.3 and
3.4:

x2 = ±
√

1

2
and λ = −1

2

Using the second possibility λ = −1 and replac-
ing it in Eq. 3.3 and 3.4:

x2 = 0 and x1 = ±1

Hence the points we have:

x(1) =

[
0√

1
2

]
x(2) =

[
0

−
√

1
2

]
︸ ︷︷ ︸

λ=− 1
2

x(3) =

[
1
0

]
x(4) =

[
−1
0

]
︸ ︷︷ ︸

λ=−1

We can also see that:

f(x(1)) = f(x(2)) =
1

2
f(x(3)) = f(x(4)) = 1

Hence if there are minimizers for f(x) then they are located at x(1) and x(2) and if there are
maximizers they are located at x(3) and x(4).

z Following equation 3.1, we can write:

[λHh] = λ1Hh1
(x) + · · ·+ λmHhm

(x)

where Hhk
:

Hhk
=


∂2hk

∂x2
1

· · · ∂2hk

∂x1∂xn

...
...

. . .
∂2hk

∂xn∂x1
· · · ∂2hk

∂x2
n


If we say Hf is the hessian of f we can write:

L(x,λ) = Hf + [λHh]

z Now to introduce the Second-Order Sufficient Condition for constrained optimization: Given
f : Rn → R subject to h(x) = 0, h : Rn → Rm, m ≤ n and both f and h are twice differentiable.
If a regular point x∗ is to be a local minimizer of f , then there exists λ∗ ∈ Rm such that:
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1. ∇f(x∗) + λ∗TJh(x∗) = 0T

2. . . . and ∀y ∈ T (x∗), y 6= 0, we have yTL(x∗,λ∗)y > 0

If we remove the requirement y 6= 0 and make TL(x∗,λ∗)y ≥ 0 in the last condition, this would
become a neccessary from a sufficient condition. Note that L(x∗,λ∗) plays a similar role to Hf (x∗

in the Second-Order Sufficient Condition for unconstrained case (introduced in Chapter 1).

z If we need to minimize a quadratic subject to linear constraints:

minimize
1

2
xTQx

subject to Ax = b

where Q > 0, A ∈ Rm×n, ;m < n and rank of A is m. This problem is a special case of Quadratic
Programming problem (the general case includes the additional constraint x ≥ 0). We can get a
unique solution using Lagrange’s theorem:

l(x,λ) =
1

2
xTQx + λ∗T(b−Ax) the Lagrange function

Jl(x
∗,λ∗) = xTQ− λ∗TA = 0T the Lagrange condition

Eventually we reach to this condition:

x∗ = Q−1AT(AQ−1AT)−1b

And of course the Hessian matrix for Lagrangian function is simply:

L(x∗,λ∗) = Q

Using the ideas discussed above, we can find the unique solution to the Quadratic Programming
problem.

3.1 Karush-Kuhn-Tucker Condition

z Karush-Kuhn-Tucker Condition helps allowing inequality constraints. Now we can solve the full
problem:

minimize f(x)

subject to h(x) = 0

g(x) ≤ 0

where x ∈ Rn and f : Rn → R. Also h : Rn → Rm, m ≤ n and g : Rn → Rp.
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z Let x∗ satisfy h(x∗) = 0, g(x∗) ≤ 0, and let I(x∗) be the index set of active (where gj(x
∗) = 0)

inequality constraints, that is:
I(x∗) , {j : gj(x

∗) = 0}
Then, we say that x∗ is a regular point if the vectors:

∇hi(x∗),∇gj(x∗), 1 ≤ i ≤ m, j ∈ I(x∗)

are linearly independent.

z If the regular point x∗ is a local minimizer for the function f subject to the constraints h(x∗) =
0, g(x∗) ≤ 0; then the Karush-Kuhn-Tucker Theorem states that there exists λ∗ ∈ Rm and
µ∗ ∈ Rp such that:

1. µ∗ ≥ 0

2. µ∗Tg(x∗) = 0

3. ∇f(x∗) + λ∗TJh(x∗) + µ∗TJg(x∗) = 0T

This is a First-Order Necessary Condition, not a sufficient one! We refer to λ∗ as Lagrange multiplier
vector (as before), and µ∗ as Karush-Kuhn-Tucker (KKT) multiplier vector.

An important corollary of the second point of this theorem is that for all inactive constraints i.e
gj(x

∗) < 0, the KKT multipliers are zero, µ∗j = 0 (in other words j 6∈ I(x∗) ⇒ µ∗j = 0). For all
active constraints, the KKT multipliers are non-negative.

z Example:

minimize f(x) = x2
1 + x2

2 + x1x2 − 3x1

subject to x1, x2 ≥ 0

Note that we can make the last condition as:

−x1,−x2 ≤ 0

First we need to compute the gradient of f : ∇f(x) =

[
2x1 + x2− 3

2x2 + x1

]
. Now we can collect our set

of KKT conditions:

1.
[
µ∗1 µ∗2

]T ≥ 0

2. µ∗Tg(x∗) = 0: [
µ∗1 µ∗2

] [−x∗1
−x∗2

]
= 0

µ∗1x
∗
1 + µ∗2x

∗
2 = 0
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3. ∇f(x∗) + λ∗TJh(x∗) + µ∗TJg(x∗) = 0T:[
2x∗1 + x∗2 − 3

2x∗2 + x∗1

]T

+
[
µ∗1 µ∗2

] [−1 0
0 −1

]
= 0T[

2x∗1 + x∗2 − 3− µ∗1
2x∗2 + x∗1 − µ∗2

]
= 0

By setting a pair of values in condition 2 to 0, we test all possibilities. The only possibility that
reveals a minimizer following the KKT conditions is:

µ∗1 = 0, x∗2 = 0, x∗1 =
3

2
, µ∗2 = −3

2
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Basic Concepts

z Moore-penrose generalized inverse for linearly independent columns:

A† = (ATA)−1AT

This is the left inverse of (A†A = I). For linearly independent rows:

A† = AT(AAT)−1

This is the right inverse of (AA† = I)
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Introduction to Regularization

z The Moore-penrose inverse is given by:

A† = VW†UT =

R∑
i=1

viui
T

wi
= (ATA)−1AT

where R = rank(A).

z The basic idea of regularization consists of considering a family of approximate solutions de-
pending on a positive parameter called the regularization parameter. For noise-free data, a function
belonging to this family should converge to the exact solution when the regularization parameter
tends to zero. For noisy data these functions will give an optimal approximation for a non-zero
regularization parameter.

z The regularized inverse is given by:

A†α = VW†αUT =

R∑
i=1

vi
qα(w2

i )

wi
ui

T

where qα(w2
i ):

qα(w2
i ) =

{
1 if w2

i > α

0 if w2
i ≤ α

z In Regularized inversion using Zero-order Tikhonov qα(w2
i ) is:

qα(w2
i ) =

w2
i

w2
i + α2
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which essentially says thats the contribution of a certain singular vector is greater with lower-order
singular values. The parameter that dictates this is α i.e. if:

w2
i � α2 ⇒ qα(w2

i )→ 0

In this case the inverse is:

A†α = VW†αUT =

R∑
i=1

vi
wi

w2
i + α2

uT
i

i.e. the value for W †α along its diagonal would be wi

w2
i +α2 . So, when:

qα(w2
i ) =

{
1 ⇒ A† = (ATA)−1AT

w2
i

w2
i +α2 ⇒ A† = (ATA + αI)−1AT

z The problem of Tikhonov regularization approaches the optimization of Af = g̃ where A
might be ill-conditioned yielding a non-unique solution. In order to give preference to a particular
solution with desirable properties, a regularization term is included in this minimization

||Af − g̃||2 + ||Γf ||2

for some chosen Γ Tikhonov matrix. If Γ = I it gives preference to smaller norms. In other cases,
highpass operators (e.g., a difference operator or a weighted Fourier operator) may be used to
enforce smoothness if the underlying vector is believed to be mostly continuous. This regularization
improves the conditioning of the problem, thus enabling a numerical solution. Here the regularized
inverse can be taken as:

A† = (ATA + ΓTΓ)−1AT

the effect of regularization may be varied via the scale of matrix Γ. For Γ = αI, when α = 0 the
Tikhonov regularization reduces to the unregularized least squares solution (moore-penrose) case,
provided that (ATA)−1 exists.

z Although at first the choice of the solution to this regularized problem may look artificial,
and indeed the matrix Γ seems rather arbitrary, the process can be justified from a Bayesian
point of view. Note that for an ill-posed problem one must necessarily introduce some additional
assumptions in order to get a stable solution. Statistically we might assume that a priori we know
that f is a random variable with a multivariate normal distribution. For simplicity we take the
mean to be zero and assume that each component is independent with standard deviation σf . We
know that our data is also subject to noise, and we take the noise in g̃ to be also independent with
zero mean and standard deviation σg̃. Under these assumptions the Tikhonov-regularized solution
is the most probable solution given the data and the a priori distribution of f , according to Bayes’
theorem. The Tikhonov matrix is then Γ = αI for Tikhonov factor α = σg̃/σf .
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Appendix

6.1 Rules of differentiation

1. The product rule:
(fg)′ = f ′g + g′f

2. The chain rule:
df(g(x))

dx
=
df(g(x))

dg(x)
.
dg(x)

dx

3. The quotient rule: (
f

g

)′
=
f ′g − g′f

g2

6.2 Partial Derivatives

z Equation of plane in R3:

z = f(x0, y0) + fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0)

Equation of the plane in R3 that contains the point (x0, y0, z0) with the normal vector n =[
a b c

]T
:

a(x− x0) + b(y − y0) + c(z − z0) = 0
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z The tangent plane to the surface given by f(x, y, z) = k at (x0, y0, z0) has the equation:

fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0) = 0

6.3 Calculus of Variation

z
dz

dt
=
∂z

∂x

dx

dt
+
∂z

∂y

dy

dt

Example:

u = x2 + 2y x = r sin(t) y = sin2(t)

∂u

∂r
=
∂u

∂x

∂x

∂r
+
∂u

∂y

∂y

∂r
= (2x)(sin(t)) + (2)(0) = 2r sin2(t)
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